Role of Quantitative EEG and EEG Reactivity in Traumatic Brain Injury

脑电图 格拉斯哥昏迷指数 定量脑电图 逻辑回归 格拉斯哥结局量表 单变量分析 医学 多元分析 内科学 麻醉 精神科
作者
Jian Wang,Li Huang,Xinhua Ma,Chunguang Zhao,Jinfang Liu,Daomiao Xu
出处
期刊:Clinical Eeg and Neuroscience [SAGE Publishing]
卷期号:53 (5): 452-459 被引量:7
标识
DOI:10.1177/1550059420984934
摘要

This study aimed to explore the effectiveness of quantitative electroencephalogram (EEG) and EEG reactivity (EEG-R) to predict the prognosis of patients with severe traumatic brain injury.This was a prospective observational study on severe traumatic brain injury. Quantitative EEG monitoring was performed for 8 to 12 hours within 14 days of onset. The EEG-R was tested during the monitoring period. We then followed patients for 3 months to determine their level of consciousness. The Glasgow Outcome Scale (GOS) score was used. The score 3, 4, 5 of GOS were defined good prognosis, and score 1 and 2 as poor prognosis. Univariate and multivariate analyses were employed to assess the association of predictors with poor prognosis.A total of 56 patients were included in the study. Thirty-two patients (57.1%) awoke (good prognosis) in 3 months after the onset. Twenty-four patients (42.9%) did not awake (poor prognosis), including 11 cases deaths. Univariate analysis showed that Glasgow coma scale (GCS) score, the amplitude-integrated EEG (aEEG), the relative band power (RBP), the relative alpha variability (RAV), the spectral entropy (SE), and EEG-R reached significant difference between the poor-prognosis and good-prognosis groups. However, age, gender, and pupillary light reflex did not correlate significantly with poor prognosis. Furthermore, multivariate logistic regression analysis showed that only RAV and EEG-R were significant independent predictors of poor prognosis, and the prognostic model containing these 2 variables yielded a predictive performance with an area under the curve of 0.882.Quantitative EEG and EEG-R may be used to assess the prognosis of patients with severe traumatic brain injury early. RAV and EEG-R were the good predictive indicators of poor prognosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
delilicate发布了新的文献求助10
1秒前
2秒前
2秒前
calvin发布了新的文献求助10
3秒前
golfgold发布了新的文献求助10
5秒前
研友_YLBPgZ完成签到,获得积分10
6秒前
不舍天真发布了新的文献求助10
6秒前
7秒前
0713完成签到,获得积分10
8秒前
MQQ完成签到 ,获得积分10
8秒前
8秒前
dhjic发布了新的文献求助10
9秒前
陈_Ccc完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
解剖六楼那小哥完成签到 ,获得积分10
14秒前
mona完成签到,获得积分10
14秒前
15秒前
搜集达人应助无所谓的啦采纳,获得10
16秒前
16秒前
隐形曼青应助无所谓的啦采纳,获得10
16秒前
小马甲应助无所谓的啦采纳,获得10
16秒前
星辰大海应助无所谓的啦采纳,获得10
16秒前
科研通AI2S应助无所谓的啦采纳,获得10
16秒前
思源应助无所谓的啦采纳,获得10
16秒前
无花果应助无所谓的啦采纳,获得10
17秒前
xyhua925完成签到,获得积分10
17秒前
天天快乐应助无所谓的啦采纳,获得10
17秒前
17秒前
Yong-AI-BUPT发布了新的文献求助10
19秒前
科研通AI5应助研友_P85D6Z采纳,获得10
21秒前
不舍天真完成签到,获得积分10
22秒前
24秒前
木木三完成签到,获得积分10
24秒前
Yong-AI-BUPT完成签到,获得积分10
29秒前
33秒前
34秒前
不能吃太饱完成签到 ,获得积分10
34秒前
35秒前
knn完成签到 ,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883885
求助须知:如何正确求助?哪些是违规求助? 3426198
关于积分的说明 10747283
捐赠科研通 3151036
什么是DOI,文献DOI怎么找? 1739202
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734