Leveraging Deep Learning and IoT big data analytics to support the smart cities development: Review and future directions

计算机科学 大数据 物联网 数据科学 分析 智慧城市 深度学习 学习分析 预测分析 数据分析 万维网 人工智能 数据挖掘
作者
Safa Ben Atitallah,Maha Driss,Wadii Boulila,Henda Ben Ghezala
出处
期刊:Computer Science Review [Elsevier BV]
卷期号:38: 100303-100303 被引量:123
标识
DOI:10.1016/j.cosrev.2020.100303
摘要

The rapid growth of urban populations worldwide imposes new challenges on citizens’ daily lives, including environmental pollution, public security, road congestion, etc. New technologies have been developed to manage this rapid growth by developing smarter cities. Integrating the Internet of Things (IoT) in citizens’ lives enables the innovation of new intelligent services and applications that serve sectors around the city, including healthcare, surveillance, agriculture, etc. IoT devices and sensors generate large amounts of data that can be analyzed to gain valuable information and insights that help to enhance citizens’ quality of life. Deep Learning (DL), a new area of Artificial Intelligence (AI), has recently demonstrated the potential for increasing the efficiency and performance of IoT big data analytics. In this survey, we provide a review of the literature regarding the use of IoT and DL to develop smart cities. We begin by defining the IoT and listing the characteristics of IoT-generated big data. Then, we present the different computing infrastructures used for IoT big data analytics, which include cloud, fog, and edge computing. After that, we survey popular DL models and review the recent research that employs both IoT and DL to develop smart applications and services for smart cities. Finally, we outline the current challenges and issues faced during the development of smart city services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
psj完成签到,获得积分10
刚刚
斜阳完成签到 ,获得积分10
刚刚
Akim应助HK采纳,获得10
3秒前
坦率的薯片完成签到,获得积分10
4秒前
4秒前
rundstedt完成签到 ,获得积分10
5秒前
5秒前
xianer完成签到,获得积分10
5秒前
Smilingjht发布了新的文献求助30
6秒前
Derek完成签到,获得积分10
6秒前
sskaze完成签到,获得积分10
6秒前
骑猪看唱本完成签到,获得积分10
7秒前
钟小熊完成签到,获得积分10
8秒前
8秒前
可可完成签到 ,获得积分10
10秒前
hebei发布了新的文献求助10
10秒前
小样发布了新的文献求助10
11秒前
11秒前
lml520发布了新的文献求助10
12秒前
13秒前
王旗发布了新的文献求助10
14秒前
15秒前
加氢脱氧完成签到,获得积分20
15秒前
15秒前
Yolo发布了新的文献求助10
15秒前
hht完成签到,获得积分10
15秒前
Rr应助89采纳,获得10
16秒前
kyhappy_2002完成签到 ,获得积分10
16秒前
温暖的沛凝完成签到 ,获得积分10
16秒前
XL完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
bkagyin应助丰富的乌冬面采纳,获得30
19秒前
胡自律完成签到,获得积分10
20秒前
贾文斌完成签到,获得积分10
20秒前
20秒前
小童完成签到,获得积分20
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295559
求助须知:如何正确求助?哪些是违规求助? 4445074
关于积分的说明 13835332
捐赠科研通 4329472
什么是DOI,文献DOI怎么找? 2376680
邀请新用户注册赠送积分活动 1371973
关于科研通互助平台的介绍 1337270