Selecting Mutual Funds from the Stocks They Hold: A Machine Learning Approach

业务 财务 计算机科学 人工智能
作者
Bin Li,Alberto G. Rossi
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:43
标识
DOI:10.2139/ssrn.3737667
摘要

We select mutual funds in real time by combining individual fund holdings and a large number (94) of stock characteristics to compute fund-level characteristics on the basis of the stocks they hold. We show that, first, the majority of funds are largely exposed---both positively and negatively---to approximately 40-50 characteristics. Second, fund performance is non-linearly related to fund characteristics and there are significant degrees of interaction between different fund characteristics and fund performance. Third, when we predict fund performance, these non-linearities and interactions prove important as machine learning methods such as Boosted Regression Trees (BRT) outperform significantly standard linear frameworks and the BRT-generated forecasts encompass the ones generated by the predictors of mutual fund performance that have been proposed in the literature so far. Fourth, while in our setting BRT outperform the LASSO, elastic nets, random forests, and neural networks with 1 through 5 hidden layers, these other machine learning methods deliver good performance and they all outperform ordinary least squares models. Finally, while we detect signicant predictability using machine learning methods, the fund characteristics that matter the most in predicting fund returns and the functional relationbetween fund characteristics and fund performance are time-varying.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liulu完成签到 ,获得积分10
刚刚
小马甲应助秋子采纳,获得10
1秒前
yuzu完成签到 ,获得积分20
1秒前
阿卡波糖完成签到,获得积分10
2秒前
顽主完成签到,获得积分10
2秒前
三颗板牙完成签到,获得积分10
5秒前
Owen应助Ljc采纳,获得10
6秒前
ll完成签到,获得积分20
7秒前
纯情的天奇完成签到 ,获得积分10
7秒前
8秒前
李爱国应助小康采纳,获得10
10秒前
思源应助文静灵雁采纳,获得10
12秒前
小马甲应助半山采纳,获得10
13秒前
13秒前
NikiJu完成签到,获得积分10
14秒前
15秒前
眯眯眼的小懒虫完成签到 ,获得积分10
18秒前
18秒前
18秒前
qvB完成签到,获得积分10
19秒前
ZZ完成签到 ,获得积分10
19秒前
kosmos完成签到,获得积分10
19秒前
芷兰丁香完成签到,获得积分10
20秒前
21秒前
21秒前
21秒前
彩色的过客完成签到 ,获得积分10
22秒前
22秒前
耳机分你一只诺完成签到 ,获得积分10
23秒前
25秒前
怎么会睡不醒完成签到 ,获得积分10
25秒前
lynn完成签到,获得积分10
26秒前
Aquilus发布了新的文献求助50
26秒前
sci梦发布了新的文献求助10
27秒前
半山发布了新的文献求助10
27秒前
Ljc发布了新的文献求助10
28秒前
wen应助洁净小鸽子采纳,获得10
33秒前
33秒前
在水一方应助刘123采纳,获得10
34秒前
qvB关注了科研通微信公众号
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778128
求助须知:如何正确求助?哪些是违规求助? 3323789
关于积分的说明 10215775
捐赠科研通 3038972
什么是DOI,文献DOI怎么找? 1667723
邀请新用户注册赠送积分活动 798378
科研通“疑难数据库(出版商)”最低求助积分说明 758339