Accurate Neuronal Soma Segmentation Using 3D Multi-Task Learning U-Shaped Fully Convolutional Neural Networks

索马 分割 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 任务(项目管理) 人工神经网络 深度学习 计算机视觉 神经科学 生物 经济 管理
作者
Tianyu Hu,Xiaofeng Xu,Shangbin Chen,Qian Liu
出处
期刊:Frontiers in Neuroanatomy [Frontiers Media]
卷期号:14 被引量:11
标识
DOI:10.3389/fnana.2020.592806
摘要

Neuronal soma segmentation is a crucial step for the quantitative analysis of neuronal morphology. Automated neuronal soma segmentation methods have opened up the opportunity to improve the time-consuming manual labeling required during the neuronal soma morphology reconstruction for large-scale images. However, the presence of touching neuronal somata and variable soma shapes in images brings challenges for automated algorithms. This study proposes a neuronal soma segmentation method combining 3D U-shaped fully convolutional neural networks with multi-task learning. Compared to existing methods, this technique applies multi-task learning to predict the soma boundary to split touching somata, and adopts U-shaped architecture convolutional neural network which is effective for a limited dataset. The contour-aware multi-task learning framework is applied to the proposed method to predict the masks of neuronal somata and boundaries simultaneously. In addition, a spatial attention module is embedded into the multi-task model to improve neuronal soma segmentation results. The Nissl-stained dataset captured by the micro-optical sectioning tomography system is used to validate the proposed method. Following comparison to four existing segmentation models, the proposed method outperforms the others notably in both localization and segmentation. The novel method has potential for high-throughput neuronal soma segmentation in large-scale optical imaging data for neuron morphology quantitative analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
机智珠完成签到,获得积分10
刚刚
调皮的幻梅关注了科研通微信公众号
刚刚
kkk完成签到,获得积分20
刚刚
1秒前
CipherSage应助鱼仔采纳,获得30
1秒前
沛蓝发布了新的文献求助10
1秒前
wujiao发布了新的文献求助10
1秒前
shngjnghydi发布了新的文献求助10
1秒前
唯手熟尔完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
武状元发布了新的文献求助10
3秒前
3秒前
btyjs完成签到,获得积分10
3秒前
orixero应助毛绒绒窝铺采纳,获得10
3秒前
ycliu完成签到,获得积分10
4秒前
4秒前
芋泥泥泥完成签到,获得积分10
4秒前
5秒前
5秒前
小瑞发布了新的文献求助10
6秒前
旺仔发布了新的文献求助10
6秒前
6秒前
征征完成签到 ,获得积分10
6秒前
吕吕发布了新的文献求助10
6秒前
萧然发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
UP发布了新的文献求助10
7秒前
852应助乔一诺采纳,获得10
7秒前
简单的听寒完成签到,获得积分20
8秒前
cherylizan完成签到,获得积分10
8秒前
wujiao完成签到,获得积分20
8秒前
Time完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4940451
求助须知:如何正确求助?哪些是违规求助? 4206580
关于积分的说明 13074753
捐赠科研通 3985154
什么是DOI,文献DOI怎么找? 2182031
邀请新用户注册赠送积分活动 1197696
关于科研通互助平台的介绍 1110012