控制器(灌溉)
控制理论(社会学)
超调(微波通信)
PID控制器
沉降时间
网格
工程类
模糊逻辑
计算机科学
电气工程
控制工程
控制(管理)
数学
阶跃响应
温度控制
生物
人工智能
农学
几何学
作者
Khairy Sayed,Hossam A. Gabbar
出处
期刊:Energies
[Multidisciplinary Digital Publishing Institute]
日期:2016-07-11
卷期号:9 (7): 532-532
被引量:53
摘要
This paper presents the control and simulation of an electric vehicle (EV) charging station using a three-level converter on the grid-side as well as on the EV-side. The charging station control schemes with three-level AC/DC power conversion and a bidirectional DC/DC charging regulator are described. The integration of EVs to the power grid provides an improvement of the grid reliability and stability. EVs are considered an asset to the smart grid to optimize effective performance economically and environmentally under various operation conditions, and more significantly to sustain the resiliency of the grid in the case of emergency conditions and disturbance events. The three-level grid side converter (GSC) can participate in the reactive power support or grid voltage control at the grid interfacing point or the common coupling point (PCC). A fuzzy logic proportional integral (FL-PI) controller is proposed to control the GSC converter. The controllers used are verified and tested by simulation to evaluate their performance using MATLAB/SIMULINK. The comparison of a PI-controller and a PI-Fuzzy controller for the EV charging station shows the effectiveness of the proposed FL-PI controller over conventional PI controller for same circuit operating conditions. A good performance for PI-Fuzzy in terms of settling time and peak overshoot can observed from the simulation results.
科研通智能强力驱动
Strongly Powered by AbleSci AI