Learning to Move in Modular Robots using Central Pattern Generators and Online Optimization

中心图形发生器 模块化设计 自重构模块化机器人 机器人 计算机科学 机器人学 人工智能 发电机(电路理论) 数字图形发生器 控制工程 非线性系统 控制理论(社会学) 移动机器人 工程类 机器人控制 控制(管理) 功率(物理) 节奏 哲学 物理 量子力学 操作系统 炸薯条 美学 电信
作者
Alexander Sproewitz,Rico Moeckel,Jérôme Maye,Auke Jan Ijspeert
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:27 (3-4): 423-443 被引量:132
标识
DOI:10.1177/0278364907088401
摘要

This article addresses the problem of how modular robotics systems, i.e. systems composed of multiple modules that can be configured into different robotic structures, can learn to locomote. In particular, we tackle the problems of online learning, that is, learning while moving, and the problem of dealing with unknown arbitrary robotic structures. We propose a framework for learning locomotion controllers based on two components: a central pattern generator (CPG) and a gradient-free optimization algorithm referred to as Powell's method. The CPG is implemented as a system of coupled nonlinear oscillators in our YaMoR modular robotic system, with one oscillator per module. The nonlinear oscillators are coupled together across modules using Bluetooth communication to obtain specific gaits, i.e. synchronized patterns of oscillations among modules. Online learning involves running the Powell optimization algorithm in parallel with the CPG model, with the speed of locomotion being the criterion to be optimized. Interesting aspects of the optimization include the fact that it is carried out online, the robots do not require stopping or resetting and it is fast. We present results showing the interesting properties of this framework for a modular robotic system. In particular, our CPG model can readily be implemented in a distributed system, it is computationally cheap, it exhibits limit cycle behavior (temporary perturbations are rapidly forgotten), it produces smooth trajectories even when control parameters are abruptly changed and it is robust against imperfect communication among modules. We also present results of learning to move with three different robot structures. Interesting locomotion modes are obtained after running the optimization for less than 60 minutes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助1jiaaa采纳,获得10
刚刚
彭于晏应助健康的秋采纳,获得10
1秒前
陈牛逼完成签到,获得积分10
1秒前
汉堡包应助Junex采纳,获得30
1秒前
1秒前
1秒前
2秒前
2秒前
周周发布了新的文献求助10
2秒前
KULI完成签到,获得积分10
2秒前
我爱科研完成签到,获得积分10
3秒前
4秒前
4秒前
nazi发布了新的文献求助10
4秒前
4秒前
科研通AI5应助猪猪女孩采纳,获得10
4秒前
zzer发布了新的文献求助10
4秒前
5秒前
科研通AI5应助雷寒云采纳,获得10
6秒前
KULI发布了新的文献求助10
6秒前
英姑应助嘀嘀咕咕采纳,获得10
6秒前
6秒前
小贝壳发布了新的文献求助10
6秒前
yueyue3SCI发布了新的文献求助20
7秒前
黑犬发布了新的文献求助10
7秒前
8秒前
8秒前
18062677029完成签到 ,获得积分10
8秒前
执着的导师完成签到,获得积分10
9秒前
诸醉山完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
danielbbbb完成签到,获得积分20
10秒前
10秒前
10秒前
11秒前
hui发布了新的文献求助10
11秒前
KYDD发布了新的文献求助10
12秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790524
求助须知:如何正确求助?哪些是违规求助? 3335294
关于积分的说明 10274188
捐赠科研通 3051766
什么是DOI,文献DOI怎么找? 1674822
邀请新用户注册赠送积分活动 802870
科研通“疑难数据库(出版商)”最低求助积分说明 760956