NetMHCpan, a method for MHC class I binding prediction beyond humans

主要组织相容性复合体 生物 MHC I级 人类白细胞抗原 猕猴 恒河猴 遗传学 MHC II级 与抗原处理相关的转运体 MHC限制 计算生物学 等位基因 免疫系统 抗原 基因 神经科学
作者
Ilka Hoof,Bjoern Peters,John Sidney,Lasse Eggers Pedersen,Alessandro Sette,Ole Lund,Søren Buus,Morten Nielsen
出处
期刊:Immunogenetics [Springer Science+Business Media]
卷期号:61 (1): 1-13 被引量:686
标识
DOI:10.1007/s00251-008-0341-z
摘要

Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method's ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cong666发布了新的文献求助10
1秒前
为科研奋斗完成签到,获得积分10
1秒前
1秒前
九思发布了新的文献求助30
2秒前
Catloaf完成签到,获得积分20
3秒前
12366666发布了新的文献求助10
3秒前
顾矜应助yangkang采纳,获得10
4秒前
4秒前
4秒前
无花果应助小马采纳,获得10
4秒前
Stefano发布了新的文献求助10
4秒前
英勇的雁完成签到,获得积分10
5秒前
5秒前
WNL发布了新的文献求助10
6秒前
光亮晓夏应助林奕辉采纳,获得10
6秒前
钟声001发布了新的文献求助10
7秒前
7秒前
StevenZhao发布了新的文献求助10
7秒前
茉行完成签到,获得积分10
7秒前
7秒前
英姑应助英勇的雁采纳,获得10
9秒前
Stefano完成签到,获得积分10
9秒前
遥感小虫发布了新的文献求助10
10秒前
丘比特应助我是笨蛋采纳,获得10
11秒前
bkagyin应助hzhang0807采纳,获得10
13秒前
冤家Gg发布了新的文献求助10
17秒前
18秒前
文静的可仁完成签到,获得积分10
18秒前
ZZRR完成签到,获得积分10
19秒前
万能图书馆应助cxt采纳,获得10
20秒前
21秒前
yiding完成签到 ,获得积分10
21秒前
22秒前
科研通AI2S应助浅斟低唱采纳,获得10
22秒前
23秒前
24秒前
清脆的初蝶完成签到 ,获得积分10
24秒前
打卡下班应助九思采纳,获得10
26秒前
26秒前
大宝君应助fd163c采纳,获得50
26秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4120913
求助须知:如何正确求助?哪些是违规求助? 3659059
关于积分的说明 11582695
捐赠科研通 3360528
什么是DOI,文献DOI怎么找? 1846507
邀请新用户注册赠送积分活动 911198
科研通“疑难数据库(出版商)”最低求助积分说明 827362