Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?

计算机科学 垂钓 万维网 渔业 生物
作者
Kaiyue Ji,Chong Liu,Zhaoqian Liu,Yafeng Deng,Tingjun Hou,Dongsheng Cao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:21
标识
DOI:10.1093/bib/bbad014
摘要

Abstract Identification of potential targets for known bioactive compounds and novel synthetic analogs is of considerable significance. In silico target fishing (TF) has become an alternative strategy because of the expensive and laborious wet-lab experiments, explosive growth of bioactivity data and rapid development of high-throughput technologies. However, these TF methods are based on different algorithms, molecular representations and training datasets, which may lead to different results when predicting the same query molecules. This can be confusing for practitioners in practical applications. Therefore, this study systematically evaluated nine popular ligand-based TF methods based on target and ligand–target pair statistical strategies, which will help practitioners make choices among multiple TF methods. The evaluation results showed that SwissTargetPrediction was the best method to produce the most reliable predictions while enriching more targets. High-recall similarity ensemble approach (SEA) was able to find real targets for more compounds compared with other TF methods. Therefore, SwissTargetPrediction and SEA can be considered as primary selection methods in future studies. In addition, the results showed that k = 5 was the optimal number of experimental candidate targets. Finally, a novel ensemble TF method based on consensus voting is proposed to improve the prediction performance. The precision of the ensemble TF method outperforms the individual TF method, indicating that the ensemble TF method can more effectively identify real targets within a given top-k threshold. The results of this study can be used as a reference to guide practitioners in selecting the most effective methods in computational drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞快的珩发布了新的文献求助10
刚刚
英姑应助liugm采纳,获得10
2秒前
2秒前
jagger完成签到,获得积分10
2秒前
3秒前
小马甲应助古炮采纳,获得50
5秒前
feizao完成签到,获得积分10
5秒前
WUYONGSHUAI发布了新的文献求助10
6秒前
Vicky完成签到 ,获得积分10
6秒前
封皮人完成签到,获得积分10
7秒前
谦让的梦山完成签到,获得积分10
9秒前
YUUNEEQUE完成签到,获得积分10
9秒前
s1kl完成签到,获得积分10
10秒前
今天想吃披萨完成签到,获得积分10
10秒前
10秒前
满意的迎南完成签到 ,获得积分10
12秒前
林非鹿完成签到 ,获得积分10
12秒前
钱从四面八方来完成签到 ,获得积分10
13秒前
科研通AI2S应助苗自中采纳,获得10
13秒前
欢乐的水牛完成签到,获得积分10
14秒前
AAA完成签到,获得积分10
16秒前
蹇蹇完成签到 ,获得积分10
19秒前
20秒前
阳光总在风雨后完成签到,获得积分10
21秒前
21秒前
悄悄.完成签到,获得积分10
22秒前
七七完成签到,获得积分10
24秒前
优秀瑞完成签到,获得积分10
24秒前
贾舒涵完成签到,获得积分10
26秒前
思源应助2thered采纳,获得10
26秒前
26秒前
星梦完成签到,获得积分20
27秒前
小杨完成签到,获得积分10
27秒前
shmily完成签到,获得积分10
28秒前
vv完成签到,获得积分10
29秒前
哈哈发布了新的文献求助10
30秒前
亚胺培南西司他丁钠完成签到 ,获得积分10
31秒前
31秒前
五十完成签到,获得积分20
33秒前
33秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798970
求助须知:如何正确求助?哪些是违规求助? 3344671
关于积分的说明 10321176
捐赠科研通 3061162
什么是DOI,文献DOI怎么找? 1680049
邀请新用户注册赠送积分活动 806877
科研通“疑难数据库(出版商)”最低求助积分说明 763429