Comprehensive assessment of nine target prediction web services: which should we choose for target fishing?

计算机科学 垂钓 万维网 渔业 生物
作者
Kaiyue Ji,Chong Liu,Zhaoqian Liu,Yafeng Deng,Tingjun Hou,Dongsheng Cao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:21
标识
DOI:10.1093/bib/bbad014
摘要

Abstract Identification of potential targets for known bioactive compounds and novel synthetic analogs is of considerable significance. In silico target fishing (TF) has become an alternative strategy because of the expensive and laborious wet-lab experiments, explosive growth of bioactivity data and rapid development of high-throughput technologies. However, these TF methods are based on different algorithms, molecular representations and training datasets, which may lead to different results when predicting the same query molecules. This can be confusing for practitioners in practical applications. Therefore, this study systematically evaluated nine popular ligand-based TF methods based on target and ligand–target pair statistical strategies, which will help practitioners make choices among multiple TF methods. The evaluation results showed that SwissTargetPrediction was the best method to produce the most reliable predictions while enriching more targets. High-recall similarity ensemble approach (SEA) was able to find real targets for more compounds compared with other TF methods. Therefore, SwissTargetPrediction and SEA can be considered as primary selection methods in future studies. In addition, the results showed that k = 5 was the optimal number of experimental candidate targets. Finally, a novel ensemble TF method based on consensus voting is proposed to improve the prediction performance. The precision of the ensemble TF method outperforms the individual TF method, indicating that the ensemble TF method can more effectively identify real targets within a given top-k threshold. The results of this study can be used as a reference to guide practitioners in selecting the most effective methods in computational drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助Dr_zs采纳,获得10
1秒前
呆萌的雁桃完成签到,获得积分10
1秒前
木子李发布了新的文献求助10
2秒前
云泥发布了新的文献求助10
3秒前
shun完成签到,获得积分10
11秒前
丘比特应助LNN采纳,获得10
13秒前
14秒前
亲爱的lv发布了新的文献求助10
14秒前
mochalv123完成签到 ,获得积分10
15秒前
李爱国应助魔幻凝云采纳,获得10
16秒前
yuchen12a发布了新的文献求助10
18秒前
nn完成签到,获得积分20
18秒前
20秒前
111发布了新的文献求助10
20秒前
20秒前
bkagyin应助coolman181214采纳,获得10
22秒前
23秒前
23秒前
nn发布了新的文献求助10
24秒前
linghanlan完成签到,获得积分10
25秒前
侯伶发布了新的文献求助10
26秒前
云泥完成签到,获得积分10
26秒前
26秒前
liu发布了新的文献求助10
26秒前
LNN发布了新的文献求助10
27秒前
28秒前
30秒前
32秒前
香雪若梅发布了新的文献求助10
34秒前
李健的粉丝团团长应助Zzz采纳,获得10
35秒前
小二郎应助www采纳,获得10
38秒前
39秒前
xc发布了新的文献求助10
40秒前
CodeCraft应助ah采纳,获得10
43秒前
赘婿应助文献分困户采纳,获得10
43秒前
LNN完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
45秒前
星星发布了新的文献求助10
45秒前
wangrch6完成签到,获得积分10
47秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4041423
求助须知:如何正确求助?哪些是违规求助? 3578819
关于积分的说明 11380899
捐赠科研通 3307725
什么是DOI,文献DOI怎么找? 1820078
邀请新用户注册赠送积分活动 893216
科研通“疑难数据库(出版商)”最低求助积分说明 815408