Dynamic network-aware soft failure localization using machine learning in optical networks

作者
Vignesh Karunakaran,Ronald Romero Reyes,Behnam Shariati,Johannes Fischer,Achim Autenrieth,Thomas Bauschert
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:17 (11): 1032-1032
标识
DOI:10.1364/jocn.564177
摘要

With the dynamic nature of optical service provisioning and network topology reconfigurations, failure identification and management become complex, as the machine learning (ML) model is trained for a specific topology with pre-defined performance metrics. This paper proposes a hybrid ML framework for continuous monitoring and soft failure (SF) localization in a partially disaggregated optical network. The framework combines a distributed unsupervised machine learning approach for per-device monitoring and an inductive graph neural network (GNN) for SF localization. This allows the system to generalize across dynamic network conditions, including optical service reconfigurations and node additions or deletions. To support real-time data collection and provide data plane visibility in the management plane, this work proposes gNMI/gRPC-based telemetry streaming using a unified ONF-TAPI YANG data model, enabling vendor-neutral communication across multi-domain networks. The proposed telemetry streaming outperforms the existing solution by reducing traffic load by a factor of 78.4%, and the inductive GNN-based failure localization maintains an accuracy of 97.4% despite dynamic network reconfigurations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助加百莉采纳,获得10
4秒前
不能说的秘密完成签到,获得积分10
4秒前
5秒前
5秒前
8秒前
9秒前
10秒前
一颗葡萄完成签到 ,获得积分10
11秒前
炙热的芙完成签到,获得积分10
12秒前
linlin发布了新的文献求助10
14秒前
15秒前
李重坤完成签到,获得积分10
17秒前
18秒前
不安的小刺猬完成签到,获得积分10
20秒前
斿斿完成签到 ,获得积分10
21秒前
打打应助逆风采纳,获得10
23秒前
23秒前
SciGPT应助金屋藏娇采纳,获得10
26秒前
27秒前
28秒前
英姑应助Liangang采纳,获得10
29秒前
linlin完成签到,获得积分10
30秒前
32秒前
36秒前
爆米花应助科研通管家采纳,获得10
42秒前
42秒前
小马甲应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
华仔应助科研通管家采纳,获得10
42秒前
小新应助科研通管家采纳,获得10
42秒前
深情安青应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
42秒前
Lucas应助科研通管家采纳,获得10
42秒前
unqiue应助科研通管家采纳,获得10
42秒前
FashionBoy应助科研通管家采纳,获得10
42秒前
香蕉觅云应助科研通管家采纳,获得10
42秒前
ding应助科研通管家采纳,获得10
43秒前
我是老大应助科研通管家采纳,获得10
43秒前
今后应助科研通管家采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566