Predicting the Sorption Capacity of Perfluoroalkyl and Polyfluoroalkyl Substances in Soils: Meta-Analysis and Machine Learning Modeling.

吸附 土壤水分 环境化学 化学 环境科学 有机化学 土壤科学 吸附
作者
Xingjia Fu,Sun Jingyu,Kun Tian,Yun Liu,Huichun Zhang
出处
期刊:PubMed
标识
DOI:10.1021/acs.est.4c11313
摘要

Predicting the soil sorption capacity for perfluoroalkyl and polyfluoroalkyl substances (PFAS) is pivotal for environmental risk assessment. However, traditional experimental methods are inefficient, necessitating computational model development. We compiled a comprehensive data set including 44 PFAS and 405 soils from 35 literature reports, conducted a meta-analysis, and constructed robust machine learning models. Machine learning models using LightGBM with RDKit or PaDEL descriptors achieved R2 of 0.89, 0.88, and 0.72, RMSE of 0.28, 0.28, and 0.36, and MAE of 0.18, 0.19, and 0.28 for cross-validation, internal test set, and external test set, respectively. SHapley Additive exPlanation (SHAP) analysis identified PFAS properties as the primary influence on sorption, followed by environmental conditions and soil properties. We found that low SOC (<0.56%) minimally affects PFAS sorption. A pH of 6 is the boundary point where anionic PFAS are mainly attracted or repelled by electrostatic interaction, and higher pH may enhance the PFAS soil sorption through cation bridges. Although van der Waals forces and polar interactions enhance the sorption of PFAS with carbon chains ≥8, the introduction of polar structures containing oxygen, nitrogen, and sulfur into PFAS will lower hydrophobicity and sorption affinity. This study provides accurate predictive models, which are helpful for environmental decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hohn发布了新的文献求助10
1秒前
3秒前
禾苗应助是真的宇航员啊采纳,获得10
4秒前
打打应助帅气的莫言采纳,获得10
5秒前
专注的故事完成签到 ,获得积分10
6秒前
wenwen发布了新的文献求助10
6秒前
SciGPT应助衫青旦采纳,获得10
6秒前
NEUER发布了新的文献求助30
7秒前
小猪猪完成签到,获得积分10
7秒前
8秒前
8秒前
善学以致用应助tongzzzxx采纳,获得10
8秒前
坦率大米完成签到,获得积分10
8秒前
10秒前
坚定的迎波完成签到,获得积分10
12秒前
坦率大米发布了新的文献求助10
12秒前
13秒前
13秒前
所所应助攸宁采纳,获得10
14秒前
14秒前
Derson发布了新的文献求助30
14秒前
脑洞疼应助小池同学采纳,获得10
15秒前
zu发布了新的文献求助10
15秒前
dellajj发布了新的文献求助10
18秒前
18秒前
20秒前
22秒前
慕青应助读书的时候采纳,获得10
24秒前
小吉利完成签到,获得积分20
24秒前
xuan完成签到,获得积分10
25秒前
25秒前
25秒前
顾矜应助黄雪峰采纳,获得10
25秒前
慕青应助烂漫的从彤采纳,获得10
26秒前
26秒前
27秒前
27秒前
NEUER完成签到,获得积分10
29秒前
zu完成签到,获得积分10
29秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097565
求助须知:如何正确求助?哪些是违规求助? 3635255
关于积分的说明 11522834
捐赠科研通 3345513
什么是DOI,文献DOI怎么找? 1838684
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497