Precise and dexterous robotic manipulation via human-in-the-loop reinforcement learning

强化学习 人在回路中 循环(图论) 计算机科学 人机交互 人工智能 控制工程 工程类 数学 组合数学
作者
Jianlan Luo,Charles Xu,Jeffrey Wu,Sergey Levine
出处
期刊:Science robotics [American Association for the Advancement of Science]
卷期号:10 (105)
标识
DOI:10.1126/scirobotics.ads5033
摘要

Robotic manipulation remains one of the most difficult challenges in robotics, with approaches ranging from classical model-based control to modern imitation learning. Although these methods have enabled substantial progress, they often require extensive manual design, struggle with performance, and demand large-scale data collection. These limitations hinder their real-world deployment at scale, where reliability, speed, and robustness are essential. Reinforcement learning (RL) offers a powerful alternative by enabling robots to autonomously acquire complex manipulation skills through interaction. However, realizing the full potential of RL in the real world remains challenging because of issues of sample efficiency and safety. We present a human-in-the-loop, vision-based RL system that achieved strong performance on a wide range of dexterous manipulation tasks, including precise assembly, dynamic manipulation, and dual-arm coordination. These tasks reflect realistic industrial tolerances, with small but critical variations in initial object placements that demand sophisticated reactive control. Our method integrates demonstrations, human corrections, sample-efficient RL algorithms, and system-level design to directly learn RL policies in the real world. Within 1 to 2.5 hours of real-world training, our approach outperformed other baselines by improving task success by 2×, achieving near-perfect success rates, and executing 1.8× faster on average. Through extensive experiments and analysis, our results suggest that RL can learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope that this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈晚拧完成签到 ,获得积分10
刚刚
lxl发布了新的文献求助20
1秒前
Blanca发布了新的文献求助30
2秒前
今后应助宫冷雁采纳,获得10
2秒前
冷静新烟完成签到,获得积分10
3秒前
EuniceMGuo发布了新的文献求助150
3秒前
喵喵完成签到 ,获得积分10
3秒前
3秒前
文艺的语蝶完成签到,获得积分10
3秒前
4秒前
非而者厚应助呆萌的书包采纳,获得10
4秒前
ttang完成签到,获得积分10
5秒前
5秒前
pop完成签到,获得积分10
7秒前
8秒前
8秒前
东郭翰完成签到 ,获得积分10
8秒前
9秒前
阿瓦隆的蓝胖子完成签到,获得积分10
9秒前
10秒前
10秒前
脑洞疼应助呆萌的书包采纳,获得10
10秒前
量子星尘发布了新的文献求助10
12秒前
宫冷雁发布了新的文献求助10
13秒前
13秒前
昌升发布了新的文献求助10
14秒前
爱学习的憨憨鸭完成签到,获得积分10
14秒前
14秒前
15秒前
zozox完成签到 ,获得积分10
15秒前
充电宝应助煤炭不甜采纳,获得10
16秒前
16秒前
全寻桃完成签到 ,获得积分10
16秒前
尹冰之发布了新的文献求助10
16秒前
18秒前
田様应助yang采纳,获得10
18秒前
英姑应助学习使我快乐采纳,获得10
19秒前
20秒前
今后应助马麻薯采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
一國兩制與國家安全 : 香港國安法透視 350
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4273323
求助须知:如何正确求助?哪些是违规求助? 3802893
关于积分的说明 11917259
捐赠科研通 3449649
什么是DOI,文献DOI怎么找? 1891842
邀请新用户注册赠送积分活动 942633
科研通“疑难数据库(出版商)”最低求助积分说明 846399