亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Implicit neural prior‐guided diffusion for spectral CT reconstruction

计算机科学 迭代重建 人工智能 投影(关系代数) 算法
作者
Yizhong Wang,Ningning Liang,Shaoyu Wang,Guo Jie,Xinrui Zhang,Zhizhong Zheng,Ailong Cai,Lei Li,Bin Yan
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7)
标识
DOI:10.1002/mp.17946
摘要

Abstract Background Spectral computed tomography (CT) plays a crucial role in various fields. However, the cumulative radiation dose from repeated x‐ray CT examinations has raised concerns about potential health risks. Reducing the projection view is an effective strategy to reduce the radiation dose, but this will lead to a notable degradation in image quality, resulting in streaking artifacts. Purpose This work aims to develop a novel spectral CT reconstruction method to alleviate the ill‐posed nature of the sparse sampling image reconstruction, while suppressing streaking artifacts and recovering detailed structures. Methods In the scope of this work, we propose an implicit neural representation (INR) prior‐guided diffusion (NeRDiff) method for spectral CT reconstruction, effectively combining the capabilities of implicit prior representation of INR and detail recovery of score‐based generative models (SGM). NeRDiff includes two key designed phases: gradient‐penalized INR learning and Pos‐INR guided SGM reconstruction. In the first phase, an improved INR is devised and utilized to enhance the network's ability of representing complex signals by applying the variable‐periodic activation function in multilayer perception network and adopting a dual‐domain loss function. In the second phase, the INR prior is incorporated as a prior guiding Langevin dynamics sampling in the reverse diffusion process of SGM. In addition, a unified mathematical model and an efficient algorithm are proposed to enhance reconstruction stability. Results Quantitative and qualitative assessments on ultra‐sparse‐view datasets from numerical simulation and preclinical mouse underscore the superiority of NeRDiff over alternative methods. Especially in the simulation experiment, the NeRDiff method achieves improvement of at least 4.75 and 1.70 dB in PSNR under 20‐view compared to the SGM proposed by Song et al. (Song‐CT) and the wavelet‐improved score‐based generative model (WSGM). Conclusions In this work, we propose the NeRDiff method for highly ill‐defined spectral CT reconstruction tasks. We have conducted a series of experiments in the ultra‐sparse‐view reconstruction task, and the experimental results consistently demonstrate the remarkable capabilities of NeRDiff in terms of anti‐artifact performance and detail preservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房靳发布了新的文献求助30
1秒前
Orange应助揽月yue采纳,获得10
11秒前
17秒前
冰封火种发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助150
22秒前
23秒前
23秒前
28秒前
冰封火种完成签到,获得积分10
38秒前
41秒前
温特完成签到 ,获得积分10
44秒前
1821977451发布了新的文献求助10
45秒前
1821977451完成签到,获得积分10
50秒前
59秒前
辞却发布了新的文献求助30
1分钟前
RR关闭了RR文献求助
1分钟前
jade完成签到,获得积分10
1分钟前
Jasper应助jade采纳,获得10
1分钟前
章鱼完成签到,获得积分10
1分钟前
1分钟前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
saara完成签到,获得积分20
1分钟前
saara发布了新的文献求助20
1分钟前
成就的咖啡完成签到 ,获得积分10
1分钟前
无情的匪完成签到 ,获得积分10
1分钟前
汤万天完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
yangderder发布了新的文献求助10
2分钟前
2分钟前
9527完成签到,获得积分10
2分钟前
周东发布了新的文献求助10
2分钟前
PengDai完成签到,获得积分10
2分钟前
PengDai发布了新的文献求助10
2分钟前
2分钟前
隐形曼青应助周东采纳,获得10
2分钟前
丘比特应助科研通管家采纳,获得30
2分钟前
揽月yue发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957925
求助须知:如何正确求助?哪些是违规求助? 4219129
关于积分的说明 13133073
捐赠科研通 4002208
什么是DOI,文献DOI怎么找? 2190234
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116613