化学吸附
吸附
人体净化
共价键
共价有机骨架
氧化还原
化学工程
密度泛函理论
金属有机骨架
化学
吸附剂
碘
材料科学
无机化学
有机化学
计算化学
核物理学
工程类
物理
作者
Yunnan Tao,Linwei He,Wenqi Zhang,Fu Peng,Zhonglin Ma,Xijian Chen,Junchang Chen,Jie Li,Baoyu Li,Long Chen,Lixi Chen,Weina Han,Chao Zhao,Juan Diwu,Zhifang Chai,Shuao Wang
出处
期刊:Small
[Wiley]
日期:2025-07-15
标识
DOI:10.1002/smll.202505411
摘要
Abstract Efficient sequestration of radioiodine is imperative for safeguarding ecosystems and advancing sustainable nuclear energy development. Covalent organic frameworks (COFs) are emerging iodine adsorbents, while their practical application is hindered by suboptimal decontamination efficiency under extreme nuclear reprocessing conditions, particularly for ppm‐level iodine. For ultra‐efficient iodine capture, a tailored linker engineering strategy is developed to precisely control the uniform distribution of silver nanoparticles within a robust sp 3 ‐amine‐linked COF (Ag 0 ‐SCU‐COF‐5). The optimized adsorbent demonstrates a superior dynamic breakthrough capacity of 0.41 g g −1 , achieving 10.8‐fold higher than commercial silver‐silica gels along with a 4.8‐fold improvement over silver‐zeolites. Notably, for ppm‐level radioactive 131 I 2 vapor, Ag 0 ‐SCU‐COF‐5 maintains over 80% decontamination efficiency for 19 h, accumulating an impressive activity of 40 000 Bq (0.134 g 131 I 2 /g sorbent). Combined experimental and theoretical analyses elucidate a dual‐pathway adsorption mechanism: i) instantaneous iodine trapping through charge‐transfer interactions at electron‐rich sp 3 ‐amine motifs, followed by ii) concurrent redox chemisorption to form AgI, as evidenced by spectroscopic characterization and density functional theory (DFT) calculations.
科研通智能强力驱动
Strongly Powered by AbleSci AI