Multi-organ-on-a-chip: Modeling strategy, method, and biomedical applications

计算机科学 实验室晶片 芯片上器官 芯片上的系统 纳米技术 炸薯条 微流控 嵌入式系统 材料科学 电信
作者
Xu Gao,Ting Wang,Wanqiu Huang,Chenyi Liu,Zhaoqi Zhang,Yuliang Deng,Jian Huang
出处
期刊:Biomicrofluidics [American Institute of Physics]
卷期号:19 (4)
标识
DOI:10.1063/5.0282055
摘要

In recent years, organ-on-a-chip technology has developed rapidly in the biomedical field. Traditional single-organ chip provides a reliable experimental platform for disease modeling and drug development by simulating the physiological function of a specific organ, and some data generated by these platforms have been recognized by the Food and Drug Administration. Nevertheless, single-organ chip cannot fully simulate the complex interactions between body organs. To address these limitations, multi-organ-on-a-chip (MOOC) platform emerged. By using microelectromechanical system technology and 3D printing method, MOOC can integrate multiple organs with different structures/connections and precisely regulate the parameters of a micro-environment, such as fluid dynamics, chemical gradient, and mechanical stress. Moreover, the use of a biocompatible membrane and matrix gel materials enables the three-dimensional construction of cellular microenvironments, which enhance substance exchange and signal transmission between organs. Combined with a real-time monitoring system, the MOOC platform offers dynamic feedback and regulatory capabilities to simulate the complex interactions of human physiology more accurately. This paper recently reviews research progress in MOOC design strategies, construction methods, and their applications in drug discovery, disease research, and personalized medicine. Additionally, the technical challenges of MOOC technology and outlook of MOOC development trend are also included in this paper. In summary, MOOC technology represents an emerging platform with significant potential to improve disease modeling and early stage drug development. Furthermore, its integration with other frontier technologies may offer new opportunities to study disease mechanisms and explore novel therapeutic strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lh6610完成签到,获得积分10
刚刚
邢邢完成签到,获得积分10
刚刚
七QI完成签到 ,获得积分10
2秒前
Vicky完成签到 ,获得积分10
2秒前
sqxl完成签到,获得积分10
2秒前
晓风完成签到,获得积分10
3秒前
梦亦非发布了新的文献求助30
3秒前
sora98完成签到 ,获得积分10
4秒前
丽丽完成签到 ,获得积分10
5秒前
高大莺完成签到 ,获得积分10
5秒前
AU魏完成签到 ,获得积分10
5秒前
felix发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
7秒前
7秒前
Hello应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
陶醉如柏完成签到,获得积分10
8秒前
无极微光应助小绵羊采纳,获得20
8秒前
山君完成签到,获得积分20
9秒前
闾丘剑封完成签到 ,获得积分10
9秒前
fz完成签到,获得积分10
9秒前
脱壳金蝉完成签到,获得积分10
10秒前
暖暖的禾日完成签到,获得积分10
10秒前
Splaink发布了新的文献求助10
11秒前
11秒前
ChiahaoKuo完成签到 ,获得积分10
11秒前
柔弱云朵完成签到,获得积分10
14秒前
縤雨完成签到 ,获得积分10
15秒前
英姑应助grace采纳,获得10
16秒前
小绵羊完成签到,获得积分20
16秒前
ppapp完成签到,获得积分10
18秒前
羊超月完成签到,获得积分10
18秒前
王志新完成签到,获得积分10
19秒前
大胆诗霜完成签到,获得积分10
20秒前
叶雪怡完成签到 ,获得积分10
20秒前
drjyang完成签到,获得积分10
20秒前
111完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5256478
求助须知:如何正确求助?哪些是违规求助? 4418730
关于积分的说明 13753082
捐赠科研通 4291913
什么是DOI,文献DOI怎么找? 2355182
邀请新用户注册赠送积分活动 1351622
关于科研通互助平台的介绍 1312330