Vision‐Guided Surgical Navigation Using Computer Vision for Dynamic Intraoperative Imaging Updates

医学 计算机视觉 医学物理学 人工智能 放射科 计算机科学
作者
Jeremy S. Ruthberg,Nicole Gunderson,Pengcheng Chen,Grant Harris,Hannah F. Case,Randall A. Bly,Eric J. Seibel,Waleed M. Abuzeid
出处
期刊:International Forum of Allergy & Rhinology [Wiley]
标识
DOI:10.1002/alr.70000
摘要

ABSTRACT Background Residual disease after endoscopic sinus surgery (ESS) contributes to poor outcomes and revision surgery. Image‐guided surgery systems cannot dynamically reflect intraoperative changes. We propose a sensorless, video‐based method for intraoperative CT updating using neural radiance fields (NeRF), a deep learning algorithm used to create 3D surgical field reconstructions. Methods Bilateral ESS was performed on three 3D‐printed models ( n = 6 sides). Postoperative endoscopic videos were processed through a custom NeRF pipeline to generate 3D reconstructions, which were co‐registered to preoperative CT scans. Digitally updated CT models were created through algorithmic subtraction of resected regions, then volumetrically segmented, and compared to ground‐truth postoperative CT. Accuracy was assessed using Hausdorff distance (surface alignment), Dice similarity coefficient (DSC) (volumetric overlap), and Bland‒Altman analysis (BAA) (statistical agreement). Results Comparison of the updated CT and the ground‐truth postoperative CT indicated an average Hausdorff distance of 0.27 ± 0.076 mm and a 95th percentile Hausdorff distance of 0.82 ± 0.165 mm, indicating sub‐millimeter surface alignment. The DSC was 0.93 ± 0.012 with values >0.9 suggestive of excellent spatial overlap. BAA indicated modest underestimation of volume on the updated CT versus ground‐truth CT with a mean difference in volumes of 0.40 cm 3 with 95% limits of agreement of 0.04‒0.76 cm 3 indicating that all samples fell within acceptable bounds of variability. Conclusions Computer vision can enable dynamic intraoperative imaging by generating highly accurate CT updates from monocular endoscopic video without external tracking. By directly visualizing resection progress, this software‐driven tool has the potential to enhance surgical completeness in ESS for next‐generation navigation platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然星月应助科研通管家采纳,获得10
1秒前
mayhem应助胡茶茶采纳,获得40
1秒前
英姑应助科研通管家采纳,获得10
1秒前
游泳池应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
1秒前
扎心应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
桐桐应助科研通管家采纳,获得30
2秒前
彭于晏应助puppy采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
Lucas应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
Wilbert完成签到 ,获得积分10
3秒前
3秒前
领导范儿应助Tom的梦想采纳,获得10
3秒前
樊远红完成签到,获得积分20
3秒前
angelinekitty完成签到,获得积分10
3秒前
再休息一分钟完成签到,获得积分10
4秒前
甜甜谷雪发布了新的文献求助10
5秒前
ghost完成签到,获得积分10
6秒前
红霞zkd完成签到,获得积分10
6秒前
英俊的铭应助ZDSHI采纳,获得30
6秒前
打打应助锣大炮采纳,获得10
6秒前
djy完成签到,获得积分10
7秒前
Sonia发布了新的文献求助10
7秒前
CipherSage应助0406采纳,获得10
7秒前
大饼完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 1000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4309166
求助须知:如何正确求助?哪些是违规求助? 3830964
关于积分的说明 11986827
捐赠科研通 3471138
什么是DOI,文献DOI怎么找? 1903267
邀请新用户注册赠送积分活动 950557
科研通“疑难数据库(出版商)”最低求助积分说明 852441