Enhancing Robustness and Generalization Capability for Multimodal Recommender Systems via Sharpness-Aware Minimization

作者
Jinfeng Xu,Zheyu Chen,Jinze Li,Shuo Yang,Wei Wang,Xiping Hu,Raymond Chi-Wing Wong,Edith C.‐H. Ngai
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:37 (11): 6406-6419 被引量:1
标识
DOI:10.1109/tkde.2025.3604242
摘要

Multimodal recommender systems utilize a variety of information types to model user preferences and item properties, aiding in the discovery of items that align with user interests. Rich multimodal information alleviates inherent challenges in recommendation systems, such as data sparsity and cold start problems. However, multimodal information further introduces challenges in terms of robustness and generalization capability. Regarding robustness, multimodal information magnifies the risks associated with information adjustment and inherent noise, posing severe challenges to the stability of recommendation models. For generalization capability, multimodal recommender systems are more complex and difficult to train, making it harder for models to handle data beyond the training set, posing significant challenges to model generalization capability. In this paper, we analyze the shortcomings of existing robustness and generalization capability enhancement strategies in the multimodal recommendation field. We propose a sharpness-aware minimization strategy focused on batch data (BSAM), which effectively enhances the robustness and generalization capability of multimodal recommender systems without requiring extensive hyper-parameter tuning. Furthermore, we introduce a mixed loss variant strategy (BSAM+), which accelerates convergence and achieves remarkable performance improvement. We provide rigorous theoretical proofs and conduct experiments with nine advanced models on five widely used datasets to validate the superiority of our strategies. Moreover, our strategies can be integrated with existing robust training and data augmentation strategies to achieve further improvement, providing a superior training paradigm for multimodal recommendations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Timber完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
王燕峰完成签到,获得积分10
2秒前
2秒前
张茜完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
123完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
三土应助淡如水采纳,获得10
7秒前
wdw2501发布了新的文献求助10
7秒前
可爱的函函应助wzyyyyy采纳,获得10
7秒前
冬无青山完成签到,获得积分10
8秒前
wx0816发布了新的文献求助10
9秒前
爱吃米线发布了新的文献求助10
9秒前
liangjinan完成签到 ,获得积分10
9秒前
9秒前
10秒前
小羊完成签到,获得积分10
10秒前
10秒前
11秒前
JamesPei应助波斯菊采纳,获得10
11秒前
可爱的函函应助大可不必采纳,获得10
11秒前
11秒前
科研通AI6应助赵晶晶采纳,获得10
11秒前
hou发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
14秒前
14秒前
可爱的函函应助xixixi采纳,获得10
15秒前
16秒前
ShengzhangLiu发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637232
求助须知:如何正确求助?哪些是违规求助? 4743065
关于积分的说明 14998575
捐赠科研通 4795529
什么是DOI,文献DOI怎么找? 2561991
邀请新用户注册赠送积分活动 1521497
关于科研通互助平台的介绍 1481513