Non-precious catalysts for alkaline hydrogen evolution reaction (HER) face a fundamental multi-scale challenge: lack of synergy between electronic structure tuning for balancing H adsorption and water dissociation, active site stabilization for boosting intrinsic turnover frequency (TOF), and mass transport. Even Pt loses 2–3 orders of magnitude activity in alkaline media due to inefficient water dissociation, a synergistic gap unresolved by the Sabatier principle alone. Existing strategies only address isolated aspects: phase engineering optimizes electronic structure but not active site stability; heteroatom doping introduces defects unlinked to mass transport; and nanostructuring enhances mass transfer but not atomic-level activity. None of them address multi-scale mechanistic synergy. Herein, we design a hierarchically porous P-doped NiCo alloy (hpP-NiCo) with an aim of achieving this synergy via integrating α-FCC/ε-HCP phases, P-induced defects, and 3D porosity. The formed α/ε interface tunes the d-band center to balance H adsorption and water dissociation; and the doped P stabilizes metal-vacancy sites to boost TOF. In addition, porosity matches mass transport with active site accessibility. In 1 M KOH, hpP-NiCo reaches 1000 mA cm−2 at 185 mV overpotential and has a Tafel slope of 43.1 mV dec−1, corresponding to electrochemical desorption as the rate-limiting step and verifying Volmer acceleration. Moreover, it also exhibits bifunctional oxygen evolution reaction (OER), achieving 100 mA cm−2 at potential of 1.55 V. This work establishes a mechanistic synergy model for non-precious HER catalysts.