Crystal plasticity simulations reveal cooperative plasticity mechanisms leading to enhanced strength and toughness in gradient nanostructured metals

材料科学 可塑性 应变硬化指数 硬化(计算) 微观结构 变形机理 韧性 复合材料 位错 变形(气象学) 晶体塑性 粒度 图层(电子)
作者
Claire Griesbach,Curt A. Bronkhorst,Ramathasan Thevamaran
出处
期刊:Acta Materialia [Elsevier]
卷期号:270: 119835-119835
标识
DOI:10.1016/j.actamat.2024.119835
摘要

Heterogeneous deformation is thought to provide the strengthening in gradient nanostructured metals, but the underlying plasticity mechanisms and optimal gradient structures for attaining improved mechanical performance remain elusive. Through crystal plasticity simulations of three-dimensional heterogeneous nanostructures, we reveal the heterogeneous-deformation-induced plasticity mechanisms which evoke increased flow strength and strain hardening. We have developed a synthetic microstructure generation algorithm which replicates both the microstructural features and external geometry of experimentally characterized samples—providing a direct comparison between the mechanical response recorded in simulations and experiments. Aligning well with experiments, the simulations show synergistically enhanced mechanical properties. High strain hardening rates directly correlate to large stress gradients that emerge due to heterogeneous deformation. Samples with smooth grain size gradients exhibit the most extreme stress gradients and correspondingly higher strain hardening rates. Large increases in dislocation density—especially within larger grains—and high intra- and inter-granular crystal rotation are plasticity mechanisms common to samples which exhibit high mechanical performance. Although the nanostructural gradients have pronounced influence over the mechanical performance, samples with the same grain size and dislocation density gradients exhibit varied mechanical properties. We show that the distribution of initial grain orientations and the microstructural constraints placed on larger grains also influence the active plasticity mechanisms providing improved mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cynthia完成签到 ,获得积分10
2秒前
2秒前
3秒前
treeman完成签到,获得积分10
3秒前
ncycg发布了新的文献求助10
3秒前
百灵完成签到 ,获得积分10
4秒前
yawnzzn9完成签到,获得积分10
5秒前
8秒前
zby发布了新的文献求助10
12秒前
14秒前
ncycg完成签到,获得积分10
14秒前
等待的谷波完成签到 ,获得积分10
17秒前
18秒前
18秒前
实之完成签到,获得积分10
19秒前
39完成签到,获得积分10
21秒前
spricity完成签到,获得积分10
23秒前
23秒前
咳咳发布了新的文献求助10
23秒前
takk完成签到,获得积分10
26秒前
26秒前
zby完成签到,获得积分10
26秒前
takk发布了新的文献求助30
30秒前
31秒前
子阅完成签到 ,获得积分10
31秒前
田様应助helinahs采纳,获得10
32秒前
大模型应助sevenscience采纳,获得10
35秒前
武映易完成签到 ,获得积分10
37秒前
tao完成签到 ,获得积分10
37秒前
38秒前
39秒前
40秒前
酸菜炖粉条完成签到,获得积分10
41秒前
星辰大海应助陈新华采纳,获得10
42秒前
午餐肉完成签到,获得积分10
43秒前
chcmuer发布了新的文献求助10
44秒前
科目三应助Yisang采纳,获得10
44秒前
王艳萍完成签到,获得积分10
44秒前
msy完成签到 ,获得积分10
46秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2474272
求助须知:如何正确求助?哪些是违规求助? 2139285
关于积分的说明 5452045
捐赠科研通 1863144
什么是DOI,文献DOI怎么找? 926327
版权声明 562833
科研通“疑难数据库(出版商)”最低求助积分说明 495537