MF-DAT: a stock trend prediction of the double-graph attention network based on multisource information fusion

计算机科学 图形 数据挖掘 人工智能 机器学习 理论计算机科学
作者
Kun Huang,Xiaoming Li,Naixue Xiong,Yihe Yang
出处
期刊:Multimedia Systems [Springer Science+Business Media]
卷期号:30 (3)
标识
DOI:10.1007/s00530-024-01333-9
摘要

Abstract Stock forecasting research, which aims to predict the future price movement of stocks, has been the focus of investors and scholars. This is important for practical applications related to human-centric computing and information sciences. Previous research has generally only considered market information other than the relationship between stocks, and it is challenging to learn a better representation of stock characteristics by considering the relationship between stocks. In the existing methods of combining market information with stock relationship modeling, most of them use predefined industry relationships to construct stock relationship diagrams, which inevitably ignores the potential interactions between stocks, especially the hidden relationships between stock groups. To this end, a new dual-graph attention model (MF-DAT) based on multisource information fusion is designed. Specifically, first, multiple features are fused by the LMF module, then the long-term and short-term state characteristics of stocks are learned through the first layer of the graph attention layer, and finally the node representation of the stock relationship network constructed by the mining stock cluster structure through community detection is updated. Our model takes into account both stock time-series information and potential relationships between stocks. Experiments on the S &P 500 and NASDAQ datasets show that our MF-DAT has better performance than the 8 SOTA methods that are now more popular.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz完成签到,获得积分10
1秒前
耍酷的斩发布了新的文献求助10
1秒前
2秒前
桐桐应助安详的未来采纳,获得10
3秒前
3秒前
ZR发布了新的文献求助10
4秒前
6秒前
蒋依伶发布了新的文献求助10
7秒前
11发布了新的文献求助10
8秒前
baobaonaixi完成签到,获得积分10
8秒前
along完成签到,获得积分10
11秒前
张张完成签到 ,获得积分10
12秒前
Luna完成签到 ,获得积分10
13秒前
蒋依伶完成签到,获得积分20
14秒前
常常完成签到,获得积分10
16秒前
11完成签到,获得积分20
17秒前
win完成签到 ,获得积分10
17秒前
偷乐完成签到,获得积分10
20秒前
li完成签到,获得积分10
21秒前
呆萌冷玉完成签到,获得积分10
24秒前
耍酷的斩完成签到,获得积分10
24秒前
知来者完成签到,获得积分10
26秒前
感动的飞鸟完成签到,获得积分10
27秒前
干净以珊发布了新的文献求助10
27秒前
FashionBoy应助少7一点8采纳,获得10
27秒前
28秒前
大气的乌冬面完成签到,获得积分10
30秒前
NexusExplorer应助学术裁缝采纳,获得10
32秒前
贾舒涵发布了新的文献求助30
33秒前
34秒前
huqing完成签到,获得积分10
34秒前
小元同学完成签到,获得积分10
34秒前
replay完成签到,获得积分10
35秒前
您好完成签到,获得积分10
36秒前
思源应助自信河马采纳,获得10
38秒前
无花果应助干净以珊采纳,获得10
42秒前
您好发布了新的文献求助10
44秒前
陈成应助科研通管家采纳,获得20
45秒前
小马甲应助科研通管家采纳,获得20
45秒前
传奇3应助科研通管家采纳,获得50
45秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841914
求助须知:如何正确求助?哪些是违规求助? 3383975
关于积分的说明 10532095
捐赠科研通 3104184
什么是DOI,文献DOI怎么找? 1709543
邀请新用户注册赠送积分活动 823313
科研通“疑难数据库(出版商)”最低求助积分说明 773878