已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying Variables Influencing Traditional Food Solid-State Fermentation by Statistical Modeling

产量(工程) 发酵 乳酸 固态发酵 生化工程 生物技术 淀粉 状态变量 生物系统 工艺工程 计算机科学 食品科学 化学 环境科学 工程类 生物 材料科学 细菌 热力学 遗传学 物理 冶金
作者
Guangyuan Jin,Sjoerd Boeschoten,Jos A. Hageman,Yang Zhu,René H. Wijffels,A. Rinzema,Yan Xu
出处
期刊:Foods [MDPI AG]
卷期号:13 (9): 1317-1317 被引量:3
标识
DOI:10.3390/foods13091317
摘要

Solid-state fermentation is widely used in traditional food production, but most of the complex processes involved were designed and are carried out without a scientific basis. Often, mathematical models can be established to describe mass and heat transfer with the assistance of chemical engineering tools. However, due to the complex nature of solid-state fermentation, mathematical models alone cannot explain the many dynamic changes that occur during these processes. For example, it is hard to identify the most important variables influencing product yield and quality fluctuations. Here, using solid-state fermentation of Chinese liquor as a case study, we established statistical models to correlate the final liquor yield with available industrial data, including the starting content of starch, water and acid; starting temperature; and substrate temperature profiles throughout the process. Models based on starting concentrations and temperature profiles gave unsatisfactory yield predictions. Although the most obvious factor is the starting month, ambient temperature is unlikely to be the direct driver of differences. A lactic-acid-inhibition model indicates that lactic acid from lactic acid bacteria is likely the reason for the reduction in yield between April and December. Further integrated study strategies are necessary to confirm the most crucial variables from both microbiological and engineering perspectives. Our findings can facilitate better understanding and improvement of complex solid-state fermentations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Akim应助研友_LMr3An采纳,获得10
1秒前
1秒前
2秒前
2秒前
3秒前
乐乐应助TaoJ采纳,获得10
4秒前
4秒前
敏家发布了新的文献求助10
4秒前
chenyuns发布了新的文献求助30
5秒前
zjb完成签到 ,获得积分10
5秒前
Stardust发布了新的文献求助30
6秒前
bzlish发布了新的文献求助10
6秒前
嘟嘟豆806完成签到 ,获得积分10
6秒前
wab完成签到,获得积分0
7秒前
结实灭男发布了新的文献求助10
7秒前
石雨欣关注了科研通微信公众号
7秒前
蓝叶发布了新的文献求助10
8秒前
天天快乐应助尽快看看采纳,获得10
8秒前
10秒前
科研通AI6.1应助bzlish采纳,获得10
10秒前
英俊的铭应助bzlish采纳,获得10
10秒前
深情安青应助Desire采纳,获得10
10秒前
科研龙发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
17秒前
17秒前
海边的卡卡罗特完成签到,获得积分10
18秒前
尽快看看发布了新的文献求助10
18秒前
championlb完成签到 ,获得积分10
19秒前
BowieHuang应助elmacho采纳,获得10
20秒前
20秒前
Desire发布了新的文献求助10
22秒前
蓝雁发布了新的文献求助10
22秒前
花菜炒肉完成签到 ,获得积分10
24秒前
爆米花应助小鱼采纳,获得10
25秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779215
求助须知:如何正确求助?哪些是违规求助? 5646297
关于积分的说明 15451448
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642783
邀请新用户注册赠送积分活动 1590462
关于科研通互助平台的介绍 1544831