清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ACEPSO: A multiple adaptive co-evolved particle swarm optimization for solving engineering problems

粒子群优化 多群优化 数学优化 元启发式 计算机科学 工程类 数学
作者
Gang Hu,Cheng Mao,Guanglei Sheng,Guo Wei
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:61: 102516-102516 被引量:12
标识
DOI:10.1016/j.aei.2024.102516
摘要

Particle swarm optimization (PSO) is one of the most classical metaheuristic algorithms that has gained significant attention since its inception. It has some inherent advantages, such as easy implementation, rapid convergence, low computational complexity and so on. However, the drawbacks of being prone to local optimization and insufficient diversity cannot be ignored. Therefore, a new multiple adaptive co-evolved particle swarm algorithm (ACEPSO) with adaptive population grouping strategy, pros-cons coevolution mechanism, new co-evolved mechanism and adaptive mutation strategy is proposed in this paper. Firstly, ACEPSO partitions the overall population into two distinct subpopulations: elite population and common population. The size of the subpopulations undergoes variations at different stages. Secondly, the introduced pros-cons coevolution mechanism effectively improves the exploration ability of PSO. Meanwhile, a new co-evolved mechanism is proposed here aiming to enhance population diversity and balance the exploration and exploitation ability. This mechanism can better transfer information between individuals and promote effective collaboration. Finally, an adaptive mutation strategy is introduced. It improves the population diversity and prevents the algorithm from falling into local optimality productively. To validate the outstanding performance of ACEPSO, this paper compares it with various state-of-the-art metaheuristic algorithms as well as their variants on CEC2017 and CEC2022 test sets. The results exhibit that ACEPSO has a standout comprehensive performance. In addition, ACEPSO is utilized to tackle a set of twelve engineering optimization problems as well as 2D robot path planning problems. On all these complex optimisation problems, ACEPSO obtains the relatively best results. All the above results manifest that ACEPSO has great advantages and competitiveness in solving some of the optimization problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
loser完成签到 ,获得积分10
45秒前
treat4869完成签到 ,获得积分10
1分钟前
ding应助九黎采纳,获得10
1分钟前
1分钟前
poki完成签到 ,获得积分10
1分钟前
九黎发布了新的文献求助10
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
如歌完成签到,获得积分10
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
紫熊完成签到,获得积分10
3分钟前
ZaZa完成签到,获得积分10
5分钟前
a61完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
成就念芹发布了新的文献求助30
6分钟前
Microbiota完成签到,获得积分10
6分钟前
xxn完成签到 ,获得积分10
7分钟前
小新小新完成签到 ,获得积分10
7分钟前
7分钟前
成就念芹发布了新的文献求助30
7分钟前
7分钟前
8分钟前
成就念芹发布了新的文献求助30
8分钟前
8分钟前
我们仨发布了新的文献求助10
8分钟前
我们仨完成签到,获得积分10
8分钟前
852应助巴山夜雨采纳,获得10
9分钟前
刘峥峥完成签到,获得积分10
9分钟前
9分钟前
巴山夜雨发布了新的文献求助10
9分钟前
JamesPei应助mengmeng采纳,获得30
10分钟前
lisa完成签到 ,获得积分10
12分钟前
笨笨山芙完成签到 ,获得积分10
13分钟前
Sunny完成签到,获得积分10
13分钟前
Akim应助Sunny采纳,获得10
13分钟前
北七完成签到,获得积分10
13分钟前
Virtual应助科研通管家采纳,获得20
14分钟前
沈惠映完成签到 ,获得积分10
14分钟前
cy0824完成签到 ,获得积分10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Revision of the Australian Thynnidae and Tiphiidae (Hymenoptera) 500
Instant Bonding Epoxy Technology 500
Pipeline Integrity Management Under Geohazard Conditions (PIMG) 500
Methodology for the Human Sciences 500
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4359903
求助须知:如何正确求助?哪些是违规求助? 3861670
关于积分的说明 12044348
捐赠科研通 3503540
什么是DOI,文献DOI怎么找? 1922873
邀请新用户注册赠送积分活动 965097
科研通“疑难数据库(出版商)”最低求助积分说明 864576