CKT-RCM: Clip-Based Knowledge Transfer and Relational Context Mining for Unbiased Panoptic Scene Graph Generation

计算机科学 人工智能 推论 场景图 关系(数据库) 图形 分类器(UML) 成对比较 分割 机器学习 模式识别(心理学) 数据挖掘 理论计算机科学 渲染(计算机图形)
作者
Nanhao Liang,Yong Liu,Wenfang Sun,Yingwei Xia,Fan Wang
标识
DOI:10.1109/icassp48485.2024.10446810
摘要

Panoptic Scene Graph (PSG) generation aims to generate a scene graph representing pairwise relationship between objects within an image. Its use of pixel-wise segmentation mask and inclusion of background regions in relationship inference make it quickly become a popular approach. However, it has an intrinsic challenge that the trained relationship predictors are either of low value or of low quality due to the long-tail distribution of typical datasets. Inspired by how humans use prior knowledge to greatly simplify this problem, we bring in two novel designs, using a pre-trained vision-language model to correct the data skewness, and using conditional prior distribution on contexts to further refine the prediction quality. Specifically, the approach named CKT-RCM first exploits relation-associated visual features from the image encoder and constructs a relation classifier by extracting text embeddings for all relationships from the text encoder of the vision-language model. It also utilizes rich relational context from subject-object pairs to facilitate informative relation predictions via a cross-attention mechanism. We conduct comprehensive experiments on the OpenPSG dataset and achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gaozengxiang完成签到,获得积分10
1秒前
Leo666win完成签到,获得积分10
2秒前
再睡一夏发布了新的文献求助10
4秒前
情怀应助土豪的大树采纳,获得10
4秒前
JamesPei应助Leo666win采纳,获得10
5秒前
5秒前
潘多拉完成签到 ,获得积分10
6秒前
迪鸣完成签到,获得积分10
6秒前
7秒前
7秒前
10秒前
无味完成签到,获得积分10
10秒前
满眼星辰发布了新的文献求助10
11秒前
12秒前
as发布了新的文献求助20
12秒前
12秒前
jjj应助念与愿采纳,获得20
13秒前
13秒前
无骨鸡爪不长胖完成签到,获得积分10
13秒前
小罗完成签到,获得积分10
14秒前
liaomr发布了新的文献求助10
15秒前
土豪的大树完成签到,获得积分10
15秒前
zjh发布了新的文献求助10
16秒前
光亮静槐发布了新的文献求助10
17秒前
18秒前
4659完成签到 ,获得积分10
18秒前
18秒前
标致的坤完成签到,获得积分10
19秒前
无味发布了新的文献求助10
20秒前
星辰大海应助满眼星辰采纳,获得10
20秒前
yeah完成签到 ,获得积分10
20秒前
笨笨芯应助姚姚的赵赵采纳,获得10
20秒前
aaron9898完成签到,获得积分10
20秒前
21秒前
21秒前
zjh发布了新的文献求助10
21秒前
22秒前
22秒前
bodhi完成签到,获得积分10
22秒前
一样谦虚完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3941810
求助须知:如何正确求助?哪些是违规求助? 3487318
关于积分的说明 11042824
捐赠科研通 3217670
什么是DOI,文献DOI怎么找? 1778376
邀请新用户注册赠送积分活动 864170
科研通“疑难数据库(出版商)”最低求助积分说明 799343