Semantic-guided fuzzing for virtual testing of autonomous driving systems

模糊测试 计算机科学 软件测试 程序设计语言 软件
作者
An Guo,Yang Feng,Yizhen Cheng,Zhenyu Chen
出处
期刊:Journal of Systems and Software [Elsevier BV]
卷期号:212: 112017-112017 被引量:1
标识
DOI:10.1016/j.jss.2024.112017
摘要

Autonomous driving systems (ADS) have achieved spectacular development and have been utilized in numerous safety-critical tasks. Nonetheless, in spite of their considerable advancement, ADS perception components with high complexity and low interpretability often demonstrate unexpected corner-case behaviors. Several real-world accidents involving self-driving cars even lead to fatalities. Before rolling the autonomous vehicles out to the end-users, it is vital to test and guarantee the safety of ADS. As one of the most critical autonomous driving testing techniques, the prevailing virtual testing depends on the tester using tool-specific languages to code traffic simulation programs correctly. However, this process often requires plenty of effort, and it may fail to capture various rare events from complex driving situations that require sophisticated awareness of the surroundings. In this paper, we design and implement a semantic-guided scene fuzzing framework for autonomous driving systems, namely FuzzScene, based on the metamorphic testing theory. It employs driving scenario description language for scenario representation and equips a tree-based mutation strategy to generate tests with proper oracle information. To improve the testing efficiency and detect misbehaviors under different settings, we propose a unique sampling strategy and construct a testing guidance criterion to optimize FuzzScene. We experiment FuzzScene with multiple steering controllers to evaluate its performance on different tasks. The experiment results show that the semantic transformed driving scenarios generated by FuzzScene efficiently detect hundreds of inconsistent behaviors of ADS. Also, the results confirm that FuzzScene can improve steering precision by retraining with the generated scenes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smiling完成签到 ,获得积分10
1秒前
bkagyin应助猪猪hero采纳,获得10
1秒前
HY完成签到,获得积分10
2秒前
chai完成签到,获得积分10
3秒前
咕叽咕叽冒不停完成签到,获得积分10
3秒前
lily完成签到 ,获得积分10
4秒前
Nancy完成签到,获得积分10
4秒前
淡然雪枫完成签到,获得积分10
4秒前
HONGYE完成签到 ,获得积分10
5秒前
菜头完成签到,获得积分10
6秒前
7秒前
陶醉的熊完成签到,获得积分10
7秒前
个性的大地完成签到,获得积分10
8秒前
wuda完成签到,获得积分10
8秒前
连冷安完成签到,获得积分10
9秒前
清秀凡霜完成签到,获得积分10
9秒前
平淡的雁开完成签到 ,获得积分10
9秒前
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
孙燕应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得10
10秒前
踏实万天完成签到,获得积分10
11秒前
赘婿应助如沐春风采纳,获得10
11秒前
aaaaaa完成签到,获得积分20
11秒前
研友_ZegMrL完成签到,获得积分10
11秒前
科研通AI2S应助tienslord采纳,获得10
12秒前
随风完成签到,获得积分0
12秒前
霸气的念云完成签到,获得积分10
12秒前
温柔的蛋挞完成签到,获得积分10
12秒前
Fang完成签到,获得积分10
13秒前
13秒前
zhoushaoyun2000完成签到,获得积分10
13秒前
kk发布了新的文献求助10
13秒前
vkl完成签到 ,获得积分10
16秒前
华仔应助ly采纳,获得10
17秒前
Steve完成签到,获得积分10
17秒前
yang完成签到,获得积分10
17秒前
猪猪hero发布了新的文献求助10
18秒前
称心映寒完成签到 ,获得积分10
18秒前
lsh完成签到,获得积分10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840917
求助须知:如何正确求助?哪些是违规求助? 3382820
关于积分的说明 10526658
捐赠科研通 3102702
什么是DOI,文献DOI怎么找? 1708952
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773632