清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Bi-Directional Ensemble Feature Reconstruction Network for Few-Shot Fine-Grained Classification

判别式 计算机科学 人工智能 班级(哲学) 模式识别(心理学) 集合(抽象数据类型) 机器学习 特征(语言学) 公制(单位) 一次性 特征提取 构造(python库) 数据挖掘 机械工程 哲学 语言学 运营管理 经济 程序设计语言 工程类
作者
Jijie Wu,Dongliang Chang,Aneeshan Sain,Xiaoxu Li,Zhanyu Ma,Jie Cao,Jun Guo,Yi-Zhe Song
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (9): 6082-6096 被引量:5
标识
DOI:10.1109/tpami.2024.3376686
摘要

The main challenge for fine-grained few-shot image classification is to learn feature representations with higher inter-class and lower intra-class variations, with a mere few labelled samples. Conventional few-shot learning methods however cannot be naively adopted for this fine-grained setting - a quick pilot study reveals that they in fact push for the opposite (i.e., lower inter-class variations and higher intra-class variations). To alleviate this problem, prior works predominately use a support set to reconstruct the query image and then utilize metric learning to determine its category. Upon careful inspection, we further reveal that such unidirectional reconstruction methods only help to increase inter-class variations and are not effective in tackling intra-class variations. In this paper, we introduce a bi-reconstruction mechanism that can simultaneously accommodate for inter-class and intra-class variations. In addition to using the support set to reconstruct the query set for increasing inter-class variations, we further use the query set to reconstruct the support set for reducing intra-class variations. This design effectively helps the model to explore more subtle and discriminative features which is key for the fine-grained problem in hand. Furthermore, we also construct a self-reconstruction module to work alongside the bi-directional module to make the features even more discriminative. We introduce the snapshot ensemble method in the episodic learning strategy - a simple trick to further improve model performance without increasing training costs. Experimental results on three widely used fine-grained image classification datasets, as well as general and cross-domain few-shot image datasets, consistently show considerable improvements compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kmzzy完成签到,获得积分10
33秒前
吕半鬼完成签到,获得积分0
35秒前
谭显芝完成签到 ,获得积分10
1分钟前
lixuebin完成签到 ,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
莓卡卡的小葡萄完成签到,获得积分10
2分钟前
2分钟前
整齐绿凝发布了新的文献求助10
2分钟前
整齐绿凝完成签到 ,获得积分10
2分钟前
3分钟前
共享精神应助张志伟采纳,获得10
3分钟前
Lain完成签到,获得积分10
3分钟前
3分钟前
张志伟发布了新的文献求助10
3分钟前
3分钟前
烂漫的无剑完成签到,获得积分10
3分钟前
juan完成签到 ,获得积分10
3分钟前
4分钟前
林沐发布了新的文献求助10
4分钟前
lingxiaoxi发布了新的文献求助10
4分钟前
lingxiaoxi完成签到,获得积分10
4分钟前
林沐完成签到,获得积分10
4分钟前
隐形曼青应助林沐采纳,获得10
4分钟前
乐乐应助张志伟采纳,获得10
4分钟前
5分钟前
张志伟发布了新的文献求助10
5分钟前
在水一方应助张志伟采纳,获得10
6分钟前
英姑应助科研通管家采纳,获得10
6分钟前
cy0824完成签到 ,获得积分10
6分钟前
文艺的筮完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
张志伟发布了新的文献求助10
7分钟前
愉快的老三完成签到,获得积分10
7分钟前
Ava应助张志伟采纳,获得10
7分钟前
8分钟前
张志伟发布了新的文献求助10
8分钟前
MchemG完成签到,获得积分0
8分钟前
ding应助张志伟采纳,获得10
9分钟前
Finch11完成签到 ,获得积分10
9分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825008
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445230
捐赠科研通 3086687
什么是DOI,文献DOI怎么找? 1698177
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907