Comparative assessment of supervised machine learning algorithms for predicting geometric characteristics of laser cladded inconel 718

因科镍合金 计算机科学 算法 机器学习 人工智能 材料科学 冶金 合金
作者
Yang Hao,Heran Geng,Marco Alfano,Junfeng Yuan
出处
期刊:Materials research express [IOP Publishing]
卷期号:11 (4): 046516-046516
标识
DOI:10.1088/2053-1591/ad4006
摘要

Abstract Laser cladding, an innovative surface modification and coating preparation process, has emerged as a research hotspot in material surface modification and green remanufacturing domains. In the laser cladding process, the interaction between laser light, powder particles, and the substrate results in a complicated mapping connection between process parameters and clad layer quality. This work aims to shed light on this mapping using fast evolving machine learning algorithms. A full factorial experimental design was employed to clad Inconel 718 powder on an A286 substrate comprising 64 groups. Analysis of variance, contour plots, and surface plots were used to explore the effects of laser power, powder feeding rate, and scanning speed on the width, height, and dilution rate of the cladding. The performance of the predictive models was evaluated using the index of merit (IM), which includes mean square error (MSE), mean absolute error (MAE), and coefficient of determination (R 2 ). By comparing the performance of the models, it was found that the Extra Trees, Random forest regression, Decision tree regression, and XGBoost algorithms exhibited the highest predictive accuracy. Specifically, the Extra Trees algorithm outperformed other machine learning models in predicting the cladding width, while the RFR algorithm excelled in predicting the associated height. The DTR algorithm demonstrated the best performance in predicting the cladding dilution rate. The R 2 values for width, height, and dilution rate were found to be 0.949, 0.954, and 0.912, respectively, for these three models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二一而已发布了新的文献求助10
1秒前
2秒前
汉堡包应助zcb采纳,获得10
2秒前
令狐远航完成签到,获得积分20
3秒前
星河完成签到 ,获得积分10
3秒前
4秒前
4秒前
打打应助多啦a萌采纳,获得10
6秒前
lxz发布了新的文献求助10
6秒前
长度2到完成签到,获得积分10
6秒前
de君发布了新的文献求助20
6秒前
7秒前
SYLH应助刀123采纳,获得10
7秒前
CodeCraft应助舒适猕猴桃采纳,获得10
8秒前
8秒前
8秒前
深情安青应助谷粱靖采纳,获得10
8秒前
JamesPei应助jzh522425采纳,获得10
9秒前
9秒前
10秒前
固的曼发布了新的文献求助10
11秒前
12秒前
12秒前
LilyChen发布了新的文献求助10
13秒前
13秒前
gustavo发布了新的文献求助10
13秒前
英俊的铭应助穆弘凯采纳,获得10
15秒前
15秒前
lxz完成签到,获得积分10
16秒前
CTtoF完成签到,获得积分10
16秒前
gui发布了新的文献求助10
17秒前
一一应助悦耳的初之采纳,获得10
17秒前
隅陬一角完成签到,获得积分10
18秒前
harmony完成签到,获得积分10
19秒前
ccerr完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
orixero应助不喝可乐采纳,获得10
20秒前
昏睡的铅笔完成签到 ,获得积分10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814715
求助须知:如何正确求助?哪些是违规求助? 3358800
关于积分的说明 10397538
捐赠科研通 3076183
什么是DOI,文献DOI怎么找? 1689750
邀请新用户注册赠送积分活动 813213
科研通“疑难数据库(出版商)”最低求助积分说明 767548