Distributed Hydrological Modeling With Physics‐Encoded Deep Learning: A General Framework and Its Application in the Amazon

计算机科学 水文模型 水流 蒸散量 分水岭 人工神经网络 比例(比率) 数据挖掘 人工智能 机器学习 地图学 地理 流域 气候学 生态学 生物 地质学
作者
Chao Wang,Shijie Jiang,Yi Zheng,Feng Han,Rohini Kumar,Oldřich Rakovec,Siqi Li
出处
期刊:Water Resources Research [Wiley]
卷期号:60 (4) 被引量:3
标识
DOI:10.1029/2023wr036170
摘要

Abstract While deep learning (DL) models exhibit superior simulation accuracy over traditional distributed hydrological models (DHMs), their main limitations lie in opacity and the absence of underlying physical mechanisms. The pursuit of synergies between DL and DHMs is an engaging research domain, yet a definitive roadmap remains elusive. In this study, a novel framework that seamlessly integrates a process‐based hydrological model encoded as a neural network (NN), an additional NN for mapping spatially distributed and physically meaningful parameters from watershed attributes, and NN‐based replacement models representing inadequately understood processes is developed. Multi‐source observations are used as training data, and the framework is fully differentiable, enabling fast parameter tuning by backpropagation. A hybrid DL model of the Amazon Basin (∼6 × 10 6 km 2 ) was established based on the framework, and HydroPy, a global‐scale DHM, was encoded as its physical backbone. Trained simultaneously with streamflow observations and Gravity Recovery and Climate Experiment satellite data, the hybrid model yielded median Nash‐Sutcliffe efficiencies of 0.83 and 0.77 for dynamic and distributed simulations of streamflow and total water storage, respectively, 41% and 35% higher than those of the original HydroPy model. Replacing the original Penman‒Monteith formulation in HydroPy with a replacement NN produces more plausible potential evapotranspiration (PET) estimates, and unravels the spatial pattern of PET in this giant basin. The NN used for parameterization was interpreted to identify the factors controlling the spatial variability in key parameters. Overall, this study lays out a feasible technical roadmap for distributed hydrological modeling in the big data era.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白皮憨憨发布了新的文献求助50
1秒前
fengmian完成签到,获得积分10
1秒前
5秒前
小蘑菇应助苹果诗筠采纳,获得10
5秒前
freesia完成签到,获得积分10
6秒前
woobinhua发布了新的文献求助10
9秒前
10秒前
manforfull完成签到,获得积分10
12秒前
12秒前
顾末完成签到,获得积分10
13秒前
keaid完成签到 ,获得积分10
13秒前
满意黑夜完成签到,获得积分10
15秒前
华老师发布了新的文献求助10
18秒前
余味应助芝士曲棍球采纳,获得10
20秒前
保持理智完成签到,获得积分10
20秒前
张萌完成签到 ,获得积分10
22秒前
深情安青应助CH采纳,获得10
22秒前
木马上市完成签到,获得积分10
23秒前
善学以致用应助woobinhua采纳,获得10
24秒前
24秒前
缥莲发布了新的文献求助20
25秒前
小马甲应助华老师采纳,获得10
25秒前
27秒前
乐乐应助空格TNT采纳,获得10
27秒前
whisper80发布了新的文献求助10
27秒前
66完成签到,获得积分10
28秒前
30秒前
MeiQQ完成签到 ,获得积分10
31秒前
安安完成签到 ,获得积分10
32秒前
ZQ发布了新的文献求助10
33秒前
CH发布了新的文献求助10
34秒前
34秒前
华老师完成签到,获得积分10
34秒前
35秒前
ZQ完成签到,获得积分10
37秒前
张张完成签到,获得积分10
37秒前
whisper80完成签到,获得积分10
40秒前
空格TNT发布了新的文献求助10
40秒前
AsaFeng完成签到 ,获得积分10
42秒前
duoduo完成签到,获得积分10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781024
求助须知:如何正确求助?哪些是违规求助? 3326438
关于积分的说明 10227265
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669535
邀请新用户注册赠送积分活动 799095
科研通“疑难数据库(出版商)”最低求助积分说明 758734