Impact of Modified Frailty Index on Readmissions Following Surgery for NSCLC

医学 倾向得分匹配 肺癌 虚弱指数 肺炎 入射(几何) 肺癌手术 外科 统计显著性 内科学 急诊医学 物理 光学
作者
Nicola Tamburini,Francesco Dolcetti,Nicolò Fabbri,Danila Azzolina,Salvatore Greco,Pio Maniscalco,Giampiero Dolci
出处
期刊:Thoracic and Cardiovascular Surgeon [Georg Thieme Verlag KG]
卷期号:73 (01): 071-077 被引量:5
标识
DOI:10.1055/a-2287-2341
摘要

Abstract Background Analyzing the risk factors that predict readmissions can potentially lead to more individualized patient care. The 11-factor modified frailty index is a valuable tool for predicting postoperative outcomes following surgery. The objective of this study is to determine whether the frailty index can effectively predict readmissions within 90 days after lung resection surgery in cancer patients within a single health care institution. Methods Patients who underwent elective pulmonary resection for nonsmall cell lung cancer (NSCLC) between January 2012 and December 2020 were selected from the hospital's database. Patients who were readmitted after surgery were compared to those who were not, based on their data. Propensity score matching was employed to enhance sample homogeneity, and further analyses were conducted on this newly balanced sample. Results A total of 439 patients, with an age range of 68 to 77 and a mean age of 72, were identified. Among them, 55 patients (12.5%) experienced unplanned readmissions within 90 days, with an average hospital stay of 29.4 days. Respiratory failure, pneumonia, and cardiac issues accounted for approximately 67% of these readmissions. After propensity score matching, it was evident that frail patients had a significantly higher risk of readmission. Additionally, frail patients had a higher incidence of postoperative complications and exhibited poorer survival outcomes with statistical significance. Conclusion The 11-item modified frailty index is a reliable predictor of readmissions following pulmonary resection in NSCLC patients. Furthermore, it is significantly associated with both survival and postoperative complications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优美茹妖完成签到,获得积分10
刚刚
认真以丹完成签到,获得积分10
刚刚
务实完成签到 ,获得积分10
刚刚
丘比特应助scichu采纳,获得10
1秒前
cosmos完成签到 ,获得积分10
1秒前
科研小白完成签到,获得积分20
1秒前
开朗寻凝完成签到,获得积分10
2秒前
喜悦发布了新的文献求助10
2秒前
分析法FXF应助香香的臭宝采纳,获得10
2秒前
lililiiii完成签到,获得积分10
2秒前
hhh完成签到,获得积分20
2秒前
bl发布了新的文献求助10
3秒前
丫丫完成签到,获得积分10
3秒前
陆小果完成签到,获得积分10
3秒前
烟花应助霸气秀采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
Ava应助梁三岁采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
碧海蓝天发布了新的文献求助10
4秒前
Bao_o_o完成签到,获得积分10
4秒前
fffff完成签到,获得积分20
4秒前
5秒前
正直凌文完成签到,获得积分10
5秒前
高高的起眸完成签到,获得积分10
5秒前
5秒前
时刻炸毛Y应助星点点采纳,获得10
5秒前
小蘑菇应助白开水采纳,获得10
6秒前
流年完成签到,获得积分10
6秒前
恋风阁完成签到 ,获得积分10
6秒前
Wendy完成签到,获得积分10
6秒前
7秒前
7秒前
小杨发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
kevindeng完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707637
求助须知:如何正确求助?哪些是违规求助? 5185201
关于积分的说明 15251349
捐赠科研通 4860931
什么是DOI,文献DOI怎么找? 2609076
邀请新用户注册赠送积分活动 1559819
关于科研通互助平台的介绍 1517579