State of Charge Estimation for Commercial Li-Ion Battery Based on Simultaneously Strain and Temperature Monitoring Over Optical Fiber Sensors

电池(电) 材料科学 光纤 离子 荷电状态 光电子学 纤维 温度测量 拉伤 电荷(物理) 国家(计算机科学) 电气工程 光纤传感器 工程类 计算机科学 电信 复合材料 物理 功率(物理) 医学 量子力学 算法 内科学
作者
Xudong Xia,Wen Wu,Zhencheng Li,Xile Han,Xiaobin Xue,Gaozhi Xiao,Tuan Guo
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11 被引量:2
标识
DOI:10.1109/tim.2024.3390696
摘要

The combination of artificial intelligence methods and multisensory is crucial for future intelligent battery management systems (BMS). Among multi-sensing technologies in batteries, simultaneously monitoring the strain and temperature is essential to determine the batteries' safety and state of charge (SoC). However, the combination still faces a few challenges, such as obtaining multi-sensing parameters with only one simple and easy-to-fabricate sensor, and how to use artificial intelligence and measurement parameters such as strain and temperature for effective modeling. To address these, we propose a novel sensing technique based on a compact dual-diameter fiber Bragg gratings (FBGs) sensor capable of being attached to the surface of a working lithium-ion pouch cell to simultaneously monitor the battery's surface strain and temperature. Then, based on the collected data of strain and temperature, we have constructed deep artificial neural network (DNN) models with different inputs to realize accurate battery SoC estimation with high resistance to electromagnetic interference. Based on our DNN models, the experimental results show that strain and temperature information can be used as supplementary parameters for improved SoC estimation (accuracy increased from 97.40% to 99.94%). Meanwhile, we also find that by just using the strain and temperature information obtained by the optical fiber sensor, the SoC estimation can be achieved without the voltage and current inputs. This new optical fiber measurement tool will provide crucial additional capabilities to battery sensing methods, especially for the future intelligent BMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
英姑应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
ningwu完成签到,获得积分10
1秒前
晴子完成签到,获得积分10
2秒前
日常常完成签到,获得积分10
2秒前
安白发布了新的文献求助10
3秒前
科研通AI5应助CY采纳,获得10
5秒前
7秒前
我是老大应助美满的安蕾采纳,获得10
8秒前
9秒前
CucRuotThua完成签到,获得积分10
10秒前
不摇碧莲完成签到 ,获得积分10
10秒前
10秒前
大白完成签到 ,获得积分10
11秒前
聪明的冬瓜完成签到,获得积分10
13秒前
14秒前
Auston_zhong应助yeyeye采纳,获得10
14秒前
16秒前
18秒前
请问发布了新的文献求助10
19秒前
自由发布了新的文献求助10
21秒前
zizhuo2完成签到,获得积分10
22秒前
iW完成签到 ,获得积分10
22秒前
letter发布了新的文献求助10
23秒前
wansida完成签到,获得积分10
28秒前
Yunus完成签到,获得积分10
29秒前
30秒前
Ouyang完成签到 ,获得积分10
33秒前
待放光的吖啶酯完成签到,获得积分10
34秒前
李健的小迷弟应助一一采纳,获得10
34秒前
35秒前
CY发布了新的文献求助10
35秒前
36秒前
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777922
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214842
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315