An Adaptive Multimodal Data Vessel Trajectory Prediction Model Based on a Satellite Automatic Identification System and Environmental Data

弹道 鉴定(生物学) 卫星 自动识别系统 计算机科学 环境数据 系统标识 人工智能 遥感 数据挖掘 工程类 地理 生态学 航空航天工程 物理 天文 生物 度量(数据仓库)
作者
Ye Xiao,Yupeng Hu,Jizhao Liu,Yi Xiao,Qianzhen Liu
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:12 (3): 513-513 被引量:2
标识
DOI:10.3390/jmse12030513
摘要

Ship trajectory prediction is essential for ensuring safe route planning and to have advanced warning of the dangers at sea. With the development of deep learning, most of the current research has explored advanced prediction methods based on historical spatio-temporal Automatic Identification System (AIS) data. However, environmental factors such as sea wind and visibility also affect ship navigation in real-world maritime shipping. Therefore, developing reliable models utilizing multimodal data, such as AIS and environmental data, is challenging. In this research, we design an adaptive multimodal vessel trajectory data prediction model (termed AMD) based on satellite AIS and environmental data. The AMD model mainly consists of an AIS-based extraction network, an environmental-based extraction network, and a fusion block. In particular, this work considers multimodal data such as historical spatio-temporal information and environmental factors. Time stamps and distances are correlated with AIS and environmental data, and a multilayer perceptron and gated recurrent unit networks are used to design multimodal feature extraction networks. Finally, the fusion block realizes the fusion output of multimodal features to improve the reliability of the AMD model. Several quantitative and qualitative experiments are conducted using real-world AIS and multimodal environmental datasets. Numerous experimental results prove that prediction performance using multimodal data can ensure satisfactory accuracy and reliability while exhibiting a positive impact on improving maritime transport services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI6应助刀疤尤金采纳,获得80
刚刚
所所应助dingtao采纳,获得10
刚刚
CipherSage应助ddm采纳,获得10
1秒前
星辰大海应助ddm采纳,获得10
1秒前
相识发布了新的文献求助10
1秒前
1秒前
wzq发布了新的文献求助30
2秒前
羊皮大哈发布了新的文献求助10
3秒前
3秒前
4秒前
JamesPei应助佳佳泥尼采纳,获得10
4秒前
科研通AI6应助001采纳,获得10
5秒前
6秒前
weidingge2011发布了新的文献求助10
6秒前
Jasper应助lv采纳,获得10
6秒前
skyspume发布了新的文献求助20
6秒前
7秒前
8秒前
工诩完成签到,获得积分10
8秒前
8秒前
淡定的吐司完成签到,获得积分10
8秒前
yxr应助房天川采纳,获得10
8秒前
Tucky完成签到,获得积分10
9秒前
丘比特应助吴是温采纳,获得10
9秒前
9秒前
淡定白易完成签到,获得积分10
10秒前
flyfish完成签到,获得积分10
12秒前
糊涂的丹南完成签到 ,获得积分10
12秒前
怡然的芯完成签到,获得积分10
13秒前
dingtao发布了新的文献求助10
14秒前
adelalady发布了新的文献求助10
14秒前
白白完成签到 ,获得积分10
14秒前
Matberry完成签到 ,获得积分10
15秒前
bmxi发布了新的文献求助10
15秒前
16秒前
黄奥龙完成签到,获得积分10
17秒前
17秒前
英俊的铭应助王小树采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4746724
求助须知:如何正确求助?哪些是违规求助? 4094243
关于积分的说明 12666636
捐赠科研通 3806161
什么是DOI,文献DOI怎么找? 2101295
邀请新用户注册赠送积分活动 1126623
关于科研通互助平台的介绍 1003174