Achievement of High‐Quality Gallium Oxide Epitaxial Growth via Machine Learning

材料科学 氧化镓 外延 质量(理念) 氧化物 纳米技术 工程物理 光电子学 冶金 认识论 工程类 哲学 图层(电子)
作者
Yaoping Lu,Yu Zhang,Ben Niu,Titao Li,Zhenjie Zheng,Lemin Jia,Duanyang Chen,Hongji Qi,Kelvin H. L. Zhang,Min Zhu,Haizhong Zhang,Xiaoqiang Lu
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202519854
摘要

Abstract The development of gallium oxide (Ga 2 O 3 )‐based electronics has been hampered by the persistent challenge of obtaining high‐quality epilayers with device‐grade performance metrics. While metal‐organic chemical vapor deposition has proven effective in producing device‐grade films, the realization of ideal step‐flow epitaxial growth with high deposition rates in Ga 2 O 3 remains a significant scientific challenge. Here, a machine learning (ML)‐guided approach is presented to overcome conventional epitaxial limitations, which are historically constrained by narrow process windows and empirical growth paradigms. Specifically, our ML‐guided approach successfully achieves perfect step‐flow epitaxy at 1.2 µm h −1 on universal β‐Ga 2 O 3 substrates, eliminating traditional requirements for large mis‐cut angle substrates and low growth rates. This breakthrough resolves the long‐standing trade‐off between crystal quality and growth efficiency. The resultant epilayers exhibit atomically smooth surfaces with record‐low roughness (0.121 nm) featuring 6 Å‐high single‐atomic‐layer steps, coupled with exceptional electrical properties. The technological viability is further validated through Schottky barrier photodiodes with excellent solar‐blind detection performance: ultra‐fast decay time (3.28 µs), ultra‐high photo‐to‐dark current ratio (PDCR > 10 5 ), and ultralow dark current density (6.2 × 10 −9 A cm −2 ). This work not only establishes ML as a revolutionary accelerator for β‐Ga 2 O 3 development but also provides a transformative methodology for next‐generation semiconductor manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LILI完成签到,获得积分10
刚刚
斯文败类应助智者采纳,获得10
刚刚
Tian完成签到,获得积分10
1秒前
hwasaa完成签到,获得积分10
1秒前
在水一方应助小鱼采纳,获得10
1秒前
aujsdhab应助炙热尔烟采纳,获得10
2秒前
袁琴发布了新的文献求助10
2秒前
平淡广山完成签到,获得积分10
3秒前
诸岩完成签到,获得积分10
3秒前
4秒前
4秒前
彭于晏应助阿盖采纳,获得10
4秒前
ding应助lemon采纳,获得10
5秒前
科研通AI2S应助####采纳,获得10
5秒前
wanci应助我不喜欢吃蔬菜采纳,获得10
5秒前
阿龙发布了新的文献求助10
5秒前
甜美枫完成签到,获得积分10
7秒前
跑快点发布了新的文献求助10
7秒前
9秒前
舒苏应助科研通管家采纳,获得60
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
好好应助科研通管家采纳,获得10
9秒前
buno应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
10秒前
前行者完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
星辰大海应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
10秒前
完美世界应助哈哈采纳,获得10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
承乐应助科研通管家采纳,获得10
10秒前
jiang应助科研通管家采纳,获得30
10秒前
10秒前
QDU应助科研通管家采纳,获得20
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613711
求助须知:如何正确求助?哪些是违规求助? 4698841
关于积分的说明 14899179
捐赠科研通 4737144
什么是DOI,文献DOI怎么找? 2547125
邀请新用户注册赠送积分活动 1511132
关于科研通互助平台的介绍 1473605