In silico-driven identification of potent CDK9 inhibitors through bioisosteric replacement and multi-stage virtual screening

作者
Juliana Amorim Conselheiro,Luis Carlos Altamirano,D. M. Souza,Chen Li,Syeda Abida Ejaz,J. C. Arevalo
出处
期刊:Scientific Reports [Springer Nature]
标识
DOI:10.1038/s41598-025-31230-8
摘要

Cyclin-dependent kinase 9 (CDK9) is a serine/threonine kinase crucial for transcriptional elongation via phosphorylation of the C-terminal domain (CTD) of RNA polymerase II, thereby enabling productive mRNA synthesis. Given its pivotal role in gene expression, CDK9 represents a validated therapeutic target in cancer research. This study employed a sequential bioisosteric replacement strategy to identify novel CDK9 inhibitors. Initially, a library of 17,633 compounds was generated by replacing the core scaffold of 134 known inhibitors. Pharmacophore-based virtual screening reduced this set to 3,754 candidates, from which a highly predictive QSAR model identified compound 50224760_85 as the most promising lead. A second round of bioisosteric substitution yielded 66,966 novel structures, increasing chemical diversity and predicted bioactivity. QSAR analysis highlighted compounds 9550, 9724, and 31801 as representative molecules with favorable predicted properties and structural novelty. Density functional theory (DFT) calculations further revealed distinct electronic and chemical reactivity profiles across these top-ranked ligands. Molecular dynamics simulations demonstrated that all three ligands maintained enhanced stability within the ATP-binding pocket of CDK9 relative to the parent compound. Consistently, binding free energy and per-residue decomposition analyses confirmed robust interactions with catalytically relevant residues, supporting their potential as potential CDK9 inhibitors. Overall, this integrative strategy identified a rich dataset of CDK9-targeting ligands with predicted Ki values comparable to the most potent experimental compounds reported to date.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸香彤完成签到,获得积分10
刚刚
zz完成签到,获得积分10
刚刚
YJ完成签到,获得积分10
刚刚
丹D应助LLL采纳,获得10
1秒前
等待的花卷完成签到,获得积分10
1秒前
小6s发布了新的文献求助10
1秒前
共享精神应助slby采纳,获得10
2秒前
游戏人间完成签到 ,获得积分10
2秒前
2秒前
苗条傲丝完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
整齐芷文完成签到,获得积分10
3秒前
三月完成签到,获得积分10
3秒前
qwe31533发布了新的文献求助10
3秒前
Zachary完成签到 ,获得积分10
3秒前
3秒前
勇敢肥猫发布了新的文献求助10
3秒前
4秒前
llw发布了新的文献求助10
4秒前
4秒前
顺顺利利发布了新的文献求助10
4秒前
Zx_1993应助张阿童木采纳,获得10
4秒前
Aug31完成签到 ,获得积分10
4秒前
yhuang完成签到,获得积分10
4秒前
HY完成签到,获得积分10
5秒前
李健应助棉花采纳,获得10
5秒前
魏骜琦发布了新的文献求助10
5秒前
6秒前
烟花应助小初采纳,获得10
6秒前
6秒前
小鳄鱼发布了新的文献求助10
6秒前
英俊的铭应助A徽采纳,获得10
7秒前
姜怡完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
肥肥完成签到,获得积分10
7秒前
deadman完成签到,获得积分10
8秒前
8秒前
完美世界应助lzw采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5471088
求助须知:如何正确求助?哪些是违规求助? 4573837
关于积分的说明 14341652
捐赠科研通 4501048
什么是DOI,文献DOI怎么找? 2466129
邀请新用户注册赠送积分活动 1454359
关于科研通互助平台的介绍 1428966