材料科学
电解质
阳极
化学工程
石墨烯
锂(药物)
纳米技术
电化学
氧化物
异质结
极化(电化学)
电极
光电子学
化学
医学
物理化学
内分泌学
工程类
冶金
作者
Yuxuan Chen,Jie He,Mengjun Li,Huasen Shen,Chi Han,Yunan Tian,Xiaoxin Wu,Yuansheng Wang,Ting Li,Xuanxuan Zhang,Yuyu Li,Fanxing Bu,Ming Xie,Zhaohuai Li
标识
DOI:10.1002/adma.202512997
摘要
Abstract This study pioneers vertically aligned honeycomb covalent organic framework (HCCOF) on graphene oxide (HCCOF‐GO) through one‐pot colloidal assembly, establishing a paradigm for interface‐engineered 2D heterostructures in lithium metal batteries (LMBs). Mechanistically, the vertical COF alignment via interfacial π–π conjugation preserves intrinsic 1.15 nm hexagonal pores while integrating Go's electron transport capabilities. When deployed as an artificial solid‐electrolyte interphase (ASEI), this architecture demonstrates triple functionalities: i) “lithiophilic” nanopores enabling dendrite‐free Li + flux (migration barrier 0.29 eV), ii) polarized interfaces regulating anion‐solvent coordination, and iii) gradient organic–inorganic solid electrolyte interphase (SEI) formation. The modified anodes achieve record Li + transference number (t Li + = 0.96) with ultra‐long cyclability (>3000 h at 10 mA cm −2 , 10 mAh cm −2 ) and minimal polarization (ΔV = 13 mV). Competitive electrochemical performance across diverse battery configurations confirms practical viability: the HCCOF‐GO@Li‖NCM811 full cell retains 81.1% of its initial capacity after 100 cycles at a practical loading of 4.5 mAh cm −2 . Corresponding pouch cells (368 Wh kg −1 ) maintain 82.3% capacity retention after 40 cycles, while HCCOF‐GO@Li‖LCO cell demonstrates remarkable cycling stability (500 cycles@80.3%) at a high voltage of 4.7 V.
科研通智能强力驱动
Strongly Powered by AbleSci AI