Dynamics analysis and DSP Implementation of the Rulkov Neuron Model with Memristive Synaptic Crosstalk

作者
Yichen Bi,Jun Mou,Herbert Ho‐Ching Iu,Nanrun Zhou,Santo Banerjee,Suo Gao
出处
期刊:Chinese Physics B [IOP Publishing]
标识
DOI:10.1088/1674-1056/ae1728
摘要

Abstract The human brain is a complex intelligent system composed of tens of billions of neurons interconnected through synapses, and its intricate network structure has consistently attracted numerous scientists to explore the mysteries of brain functions. However, most existing studies have only verified the biological mimicry characteristics of memristors at the single neuron-synapse level, and there is still a lack of research on memristors simulating synaptic coupling between neurons in multi-neuron networks. Based on this, this paper uses discrete memristors to couple dual discrete Rulkov neurons, and adds synaptic crosstalk between the two discrete memristors to form a neuronal network. A memristorcoupled dualneuron map, called the RulkovMemristorRulkov (R-M-R) map, is constructed to simulate synaptic connections between neurons in biological tissues. Then, the equilibrium points of the R-M-R map are studied. Subsequently, the effect of parameter variations on the dynamic performance of the R-M-R map is comprehensively analyzed using bifurcation diagram, phase diagram, Lyapunov Exponent spectrum (LEs), firing diagram, and Spectral Entropy (SE) complexity algorithms. In the R-M-R map, diverse categories of periodic, chaotic, and hyperchaotic attractors, as well as different states of firing patterns, can be observed. Additionally, different types of state transitions and coexisting attractors are discovered. Finally, the feasibility of the model in digital circuits is verified using a DSP hardware platform. In this study, the coupling principle of biological neurons is simulated, the chaotic dynamic behavior of the R-M-R map is analyzed, and a foundation is laid for deciphering the complex working mechanisms of the brain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助一往之前采纳,获得10
刚刚
刚刚
物质尽头完成签到,获得积分10
1秒前
聪慧含烟发布了新的文献求助10
1秒前
2秒前
昏睡的蟠桃应助Macgonal采纳,获得200
3秒前
4秒前
今后应助momo采纳,获得10
4秒前
4秒前
orixero应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
godslibrary应助科研通管家采纳,获得30
6秒前
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
强砸完成签到,获得积分10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
Lojong发布了新的文献求助10
7秒前
香蕉觅云应助何孟怡采纳,获得30
9秒前
金鑫发布了新的文献求助10
10秒前
10秒前
搜集达人应助破晓星采纳,获得10
11秒前
11秒前
pka发布了新的文献求助10
11秒前
13秒前
14秒前
852应助Riggs_蹊采纳,获得10
15秒前
两酒窝发布了新的文献求助10
16秒前
17秒前
19秒前
19秒前
爆米花应助快乐的谷蓝采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290113
求助须知:如何正确求助?哪些是违规求助? 4441518
关于积分的说明 13827744
捐赠科研通 4324173
什么是DOI,文献DOI怎么找? 2373539
邀请新用户注册赠送积分活动 1368892
关于科研通互助平台的介绍 1332883