已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Research on building energy consumption model based on multiple regression

能源消耗 回归分析 消费(社会学) 计算机科学 数据建模 统计 计量经济学 机器学习 工程类 数学 数据库 电气工程 社会学 社会科学
作者
ZhenJia Jin,Haibin Li,Z. Liu
标识
DOI:10.1117/12.2687743
摘要

The benchmarking and evaluation of the energy consumption of public buildings can provide a data basis for building energy-saving work during the operation phase and is an important guarantee for the actual energy-saving effect. In this paper, the life cycle carbon emission of Chinese buildings is taken as the research object. Through scenario simulation, the evolution trend of future carbon emission of macro construction sector is deeply discussed, and the key stages and key factors affecting the peak of carbon emission are analyzed. In addition, the responsibility of carbon emission reduction is effectively and fairly shared based on the actual situation. The main results of this study can enrich the discussion on the current situation of life-cycle energy consumption and carbon emissions of the macro building sector to a certain extent, and also further improve and expand the empirical method and theoretical system of the driving factors of carbon emissions of the macro building sector and the prediction of carbon emissions peak. From a practical point of view, the results of this study will be helpful for the Chinese government to predict the future development of carbon emissions in the macro construction sector, and also provide reference for the future "14th Five-Year Plan" emission reduction target setting or more long-term energy conservation and emission reduction policy planning. Then, based on the complex and variable non-steady-state characteristics of the building Mechanical Electrical & Plumbing system, a Non-Intrusive Load Measurement method using composite classification algorithm is established for the equipment energy splitting, and the accuracy of which is obtained by the application in an example project is significant improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晏詹发布了新的文献求助10
刚刚
今后应助清爽音响采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
刚刚
Lucas应助科研通管家采纳,获得10
刚刚
刚刚
浮游应助科研通管家采纳,获得10
1秒前
Steven应助今天心情好朋友采纳,获得10
1秒前
Fen发布了新的文献求助10
1秒前
Owen应助Hilda007采纳,获得10
1秒前
1秒前
慕青应助gabbie采纳,获得10
2秒前
cheesec发布了新的文献求助10
2秒前
2秒前
maxwell158发布了新的文献求助10
3秒前
6秒前
6秒前
nms170520完成签到,获得积分20
7秒前
7秒前
青柠完成签到 ,获得积分10
9秒前
10秒前
慕容千雨完成签到 ,获得积分10
10秒前
12秒前
12秒前
zz发布了新的文献求助30
13秒前
fly关注了科研通微信公众号
13秒前
焱焱不忘完成签到 ,获得积分0
14秒前
UU完成签到 ,获得积分10
14秒前
16秒前
16秒前
情怀应助maxwell158采纳,获得10
18秒前
星辰大海应助HonestLiang采纳,获得10
18秒前
香蕉觅云应助霸气的黄豆采纳,获得10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355792
求助须知:如何正确求助?哪些是违规求助? 4487641
关于积分的说明 13970761
捐赠科研通 4388399
什么是DOI,文献DOI怎么找? 2411058
邀请新用户注册赠送积分活动 1403632
关于科研通互助平台的介绍 1377189