A Novel Local Feature Descriptor and an Accurate Transformation Estimation Method for 3-D Point Cloud Registration

稳健性(进化) 直方图 标准差 人工智能 点云 计算机科学 模式识别(心理学) 统计的 图像配准 转化(遗传学) 排名(信息检索) 数学 统计 图像(数学) 生物化学 化学 基因
作者
Bao Zhao,Jiahui Yue,Tang Zhen,Xiaobo Chen,Xianyong Fang,Xinyi Le
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-15 被引量:7
标识
DOI:10.1109/tim.2023.3308245
摘要

Point cloud registration plays an important role in three-dimensional (3-D) computer vision. Local feature-based registration as a kind of effective and robust method has two critical steps: descriptor generation and transformation estimation. This paper proposes a novel local feature descriptor termed Local Normal Deviation Statistic Histogram (LNDSH) and an accurate transformation estimation method named 2-point based SAmple Consensus with Compatibility Ranking (2SAC-CR). Our LNDSH is generated on a local reference axis (LRA), and fully encodes geometric and spatial information by six attributes in which a new attribute named Mean Normal Deviation Value ( mndv ) is proposed. mndv encodes mean normal deviation at each point, which is not influenced by the error of an LRA. In 2SAC-CR, an effective compatibility ranking is firstly conducted to increase the possibility of capturing correct correspondences. Then an LRA-based hypothesis generation and a novel hypothesis verification strategy are alternately implemented based on the ranking to ensure an accurate and efficient "hypothesis generation and verification". Finally, the maximum consensus is used to generate the output transformation, further reducing the error of the result. Extensive experiments conducted on six standard datasets verify that LNDSH has high descriptiveness and strong robustness, and 2SAC-CR possesses high accuracy and strong robustness. Rigorous comparisons with the state-of-the-arts show the overall superiority of our methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pothos完成签到,获得积分10
1秒前
zho发布了新的文献求助10
1秒前
陶醉的青雪完成签到,获得积分20
1秒前
科研通AI5应助科研采纳,获得10
1秒前
难过的亦云发布了新的文献求助100
2秒前
LaTeXer应助LLRO采纳,获得200
3秒前
duke发布了新的文献求助10
3秒前
5秒前
柴柴完成签到,获得积分10
6秒前
6秒前
helix发布了新的文献求助10
7秒前
7秒前
桐桐应助泥嚎采纳,获得10
7秒前
CipherSage应助QIAN采纳,获得10
7秒前
8秒前
大魁发布了新的文献求助10
8秒前
leo发布了新的文献求助10
8秒前
完美世界应助叶子采纳,获得10
8秒前
zzZ_完成签到 ,获得积分10
9秒前
汉堡包应助无心风云采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
隐形曼青应助糖葫芦采纳,获得10
11秒前
英姑应助LLL采纳,获得10
12秒前
恩雁发布了新的文献求助50
12秒前
城九寒发布了新的文献求助10
12秒前
12秒前
科研通AI5应助wise111采纳,获得10
12秒前
秦傲晴完成签到,获得积分10
13秒前
朝阳CAAS完成签到,获得积分10
13秒前
Violet发布了新的文献求助80
15秒前
54123发布了新的文献求助10
15秒前
里面发布了新的文献求助30
15秒前
ff567发布了新的文献求助10
15秒前
青花溅雨发布了新的文献求助10
17秒前
17秒前
阿尔文应助文件撤销了驳回
17秒前
cyn完成签到,获得积分10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810891
求助须知:如何正确求助?哪些是违规求助? 3355340
关于积分的说明 10375473
捐赠科研通 3072137
什么是DOI,文献DOI怎么找? 1687237
邀请新用户注册赠送积分活动 811509
科研通“疑难数据库(出版商)”最低求助积分说明 766677