Artificial visual‐tactile perception array for enhanced memory and neuromorphic computations

神经形态工程学 计算机科学 人工智能 人工神经网络
作者
Jiaqi He,Ruilai Wei,Shuaipeng Ge,Wenqiang Wu,Jianchao Guo,Juan Tao,Ru Wang,Chunfeng Wang,Caofeng Pan
出处
期刊:InfoMat [Wiley]
被引量:42
标识
DOI:10.1002/inf2.12493
摘要

Abstract The emulation of human multisensory functions to construct artificial perception systems is an intriguing challenge for developing humanoid robotics and cross‐modal human–machine interfaces. Inspired by human multisensory signal generation and neuroplasticity‐based signal processing, here, an artificial perceptual neuro array with visual‐tactile sensing, processing, learning, and memory is demonstrated. The neuromorphic bimodal perception array compactly combines an artificial photoelectric synapse network and an integrated mechanoluminescent layer, endowing individual and synergistic plastic modulation of optical and mechanical information, including short‐term memory, long‐term memory, paired pulse facilitation, and “learning‐experience” behavior. Sequential or superimposed visual and tactile stimuli inputs can efficiently simulate the associative learning process of “Pavlov's dog”. The fusion of visual and tactile modulation enables enhanced memory of the stimulation image during the learning process. A machine‐learning algorithm is coupled with an artificial neural network for pattern recognition, achieving a recognition accuracy of 70% for bimodal training, which is higher than that obtained by unimodal training. In addition, the artificial perceptual neuron has a low energy consumption of ∼20 pJ. With its mechanical compliance and simple architecture, the neuromorphic bimodal perception array has promising applications in large‐scale cross‐modal interactions and high‐throughput intelligent perceptions. image
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
agui发布了新的文献求助10
4秒前
zyf发布了新的文献求助10
5秒前
Walter发布了新的文献求助10
6秒前
6秒前
Cilvord发布了新的文献求助10
6秒前
7秒前
碧蓝的幻梦完成签到,获得积分10
8秒前
华仔应助找找找采纳,获得50
9秒前
醒醒完成签到,获得积分10
9秒前
文静的从菡完成签到,获得积分10
10秒前
无风发布了新的文献求助10
11秒前
hyc发布了新的文献求助10
12秒前
ll应助啦啦啦采纳,获得20
12秒前
左旋发布了新的文献求助10
13秒前
积极的思真完成签到,获得积分10
13秒前
CAOHOU应助巴巴塔采纳,获得10
14秒前
liji完成签到,获得积分20
14秒前
bkagyin应助zyf采纳,获得10
14秒前
15秒前
keyantong发布了新的文献求助10
16秒前
khurram完成签到,获得积分10
16秒前
汉堡包应助柯飞扬采纳,获得10
17秒前
木木198022完成签到,获得积分10
17秒前
18秒前
Owen应助诚心凝旋采纳,获得10
18秒前
19秒前
19秒前
AAA建材王哥完成签到,获得积分10
19秒前
左旋完成签到,获得积分10
19秒前
20秒前
zhang完成签到 ,获得积分10
21秒前
21秒前
公茂源完成签到 ,获得积分10
21秒前
22秒前
23秒前
123发布了新的文献求助10
24秒前
huhuhuuh发布了新的文献求助10
25秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 580
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4089285
求助须知:如何正确求助?哪些是违规求助? 3627922
关于积分的说明 11503215
捐赠科研通 3340501
什么是DOI,文献DOI怎么找? 1836396
邀请新用户注册赠送积分活动 904372
科研通“疑难数据库(出版商)”最低求助积分说明 822229