亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Geometric Boundary Guided Feature Fusion and Spatial-Semantic Context Aggregation for Semantic Segmentation of Remote Sensing Images

计算机科学 人工智能 背景(考古学) 分割 特征(语言学) 空间语境意识 模式识别(心理学) 边界(拓扑) 像素 光学(聚焦) 一致性(知识库) 图像分割 计算机视觉 数学 地理 哲学 考古 数学分析 物理 光学 语言学
作者
Yupei Wang,Haoran Zhang,Yongkang Hu,Xiaoxing Hu,Liang Chen,Shanqing Hu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 6373-6385 被引量:6
标识
DOI:10.1109/tip.2023.3326400
摘要

Semantic segmentation of remote sensing images aims to achieve pixel-level semantic category assignment for input images. This task has achieved significant advances with the rapid development of deep neural network. Most current methods mainly focus on effectively fusing the low-level spatial details and high-level semantic cues. Other methods also propose to incorporate the boundary guidance to obtain boundary preserving segmentation. However, current methods treat the multi-level feature fusion and the boundary guidance as two separate tasks, resulting in sub-optimal solutions. Moreover, due to the large inter-class difference and small intra-class consistency within remote sensing images, current methods often fail to accurately aggregate the long-range contextual cues. These critical issues make current methods fail to achieve satisfactory segmentation predictions, which severely hinder downstream applications. To this end, we first propose a novel boundary guided multi-level feature fusion module to seamlessly incorporate the boundary guidance into the multi-level feature fusion operations. Meanwhile, in order to further enforce the boundary guidance effectively, we employ a geometric-similarity-based boundary loss function. In this way, under the explicit guidance of boundary constraint, the multi-level features are effectively combined. In addition, a channel-wise correlation guided spatial-semantic context aggregation module is presented to effectively aggregate the contextual cues. In this way, subtle but meaningful contextual cues about pixel-wise spatial context and channel-wise semantic correlation are effectively aggregated, leading to spatial-semantic context aggregation. Extensive qualitative and quantitative experimental results on ISPRS Vaihingen and GaoFen-2 datasets demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助图书检索员采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
我是老大应助整齐飞凤采纳,获得10
23秒前
1分钟前
整齐飞凤完成签到,获得积分10
1分钟前
小王发布了新的文献求助10
1分钟前
1分钟前
整齐飞凤发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
秋er完成签到,获得积分20
2分钟前
2分钟前
2分钟前
科研通AI2S应助yyyu采纳,获得10
2分钟前
2分钟前
秋er发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
FashionBoy应助调皮帆布鞋采纳,获得10
4分钟前
4分钟前
蟹蟹发布了新的文献求助10
4分钟前
丘比特应助蟹蟹采纳,获得10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
HuiHui完成签到,获得积分10
6分钟前
7分钟前
pan完成签到,获得积分10
7分钟前
英俊的铭应助pan采纳,获得10
7分钟前
punch完成签到 ,获得积分10
7分钟前
bkagyin应助科研通管家采纳,获得10
8分钟前
Dannnn完成签到 ,获得积分10
8分钟前
蔡毛线完成签到,获得积分10
8分钟前
9分钟前
cdercder应助风华正茂采纳,获得30
9分钟前
ldjldj_2004完成签到 ,获得积分10
9分钟前
平常从蓉完成签到,获得积分0
10分钟前
上官若男应助科研通管家采纳,获得10
10分钟前
科研通AI2S应助科研通管家采纳,获得10
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843229
求助须知:如何正确求助?哪些是违规求助? 3385459
关于积分的说明 10540628
捐赠科研通 3106102
什么是DOI,文献DOI怎么找? 1710848
邀请新用户注册赠送积分活动 823794
科研通“疑难数据库(出版商)”最低求助积分说明 774300