Optimized variable selection and machine learning models for olive oil quality assessment using portable near infrared spectroscopy

偏最小二乘回归 橄榄油 质量(理念) 均方误差 化学计量学 统计 数学 特征选择 环境科学 计算机科学 化学 人工智能 机器学习 食品科学 哲学 认识论
作者
Reda Rabie,Taoufiq Saffaj,Ilham Bouzida,Ouadi Saidi,Malika Belgrir,Brahim Lakssir,El Mestafa El Hadrami
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:303: 123213-123213 被引量:1
标识
DOI:10.1016/j.saa.2023.123213
摘要

Olive oil is a key component of the Mediterranean diet, rich in antioxidants and beneficial monounsaturated fatty acids. As a result, high-quality olive oil is in great demand, with its price varying depending on its quality. Traditional chemical tests for assessing olive oil quality are expensive and time-consuming. To address these limitations, this study explores the use of near infrared spectroscopy (NIRS) in predicting key quality parameters of olive oil, including acidity, K232, and K270. To this end, a set of 200 olive oil samples was collected from various agricultural regions of Morocco, covering all three quality categories (extra virgin, virgin, and ordinary virgin). The findings of this study have implications for reducing analysis time and costs associated with olive oil quality assessment. To predict olive oil quality parameters, chemical analysis was conducted in accordance with international standards, while the spectra were obtained using a portable NIR spectrometer. Partial least squares regression (PLSR) was employed along with various variable selection algorithms to establish the relationship between wavelengths and chemical data in order to accurately predict the quality parameters. Through this approach, the study aimed to enhance the efficiency and accuracy of olive oil quality assessment. The obtained results show that NIRS combined with machine learning accurately predicted the acidity using iPLS methods for variable selection, it generates a PLSR with coefficients of determination R2 = 0.94, root mean square error RMSE = 0.32 and ratios of standard error of performance to standard deviation RPD = 4.2 for the validation set. Also, the use of variable selection methods improves the quality of the prediction. For K232 and K270 the NIRS shows moderate prediction performance, it gave an R2 between 0.60 and 0.75. Generally, the results showed that it was possible to predict acidity K232, and K270 parameters with excellent to moderate accuracy for the two last parameters. Moreover, it was also possible to distinguish between different quality groups of olive oil using the principal component analysis PCA, and the use of variable selection helps to use the useful wavelength for the prediction olive oil using a portable NIR spectrometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔幻若血发布了新的文献求助10
刚刚
柠檬味冰沙完成签到,获得积分10
刚刚
厚厚厚厚厚丶完成签到,获得积分10
2秒前
muyi发布了新的文献求助10
2秒前
尘南浔发布了新的文献求助10
2秒前
陶军辉发布了新的文献求助10
3秒前
板栗完成签到,获得积分10
3秒前
iceice完成签到,获得积分20
3秒前
潘先森发布了新的文献求助10
3秒前
4秒前
4秒前
Owen应助ww采纳,获得10
4秒前
4秒前
Ali发布了新的文献求助10
4秒前
DDL完成签到,获得积分10
4秒前
5秒前
Hailey发布了新的文献求助10
5秒前
爱睡午觉完成签到,获得积分10
5秒前
啊懂发布了新的文献求助10
5秒前
5秒前
6秒前
爱民完成签到,获得积分10
7秒前
7秒前
昏睡的蟠桃应助绾宸采纳,获得30
8秒前
xvping完成签到,获得积分10
8秒前
lq发布了新的文献求助10
9秒前
9秒前
清凉茶完成签到,获得积分10
9秒前
quester发布了新的文献求助10
9秒前
酷波er应助张祖伦采纳,获得10
9秒前
pcr163应助虾仁不眨眼采纳,获得50
10秒前
二十六画生完成签到,获得积分10
10秒前
脑洞疼应助陶军辉采纳,获得10
10秒前
潘先森完成签到,获得积分10
10秒前
饱满以松发布了新的文献求助10
10秒前
Owen应助燕十三采纳,获得10
10秒前
长情正豪发布了新的文献求助10
10秒前
11秒前
大马哈鱼发布了新的文献求助10
11秒前
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786282
求助须知:如何正确求助?哪些是违规求助? 3332048
关于积分的说明 10253238
捐赠科研通 3047330
什么是DOI,文献DOI怎么找? 1672506
邀请新用户注册赠送积分活动 801330
科研通“疑难数据库(出版商)”最低求助积分说明 760141