Lung Sound Recognition Method Based on Multi-Resolution Interleaved Net and Time-Frequency Feature Enhancement

计算机科学 特征(语言学) 分类器(UML) 时频分析 卷积神经网络 模式识别(心理学) 人工智能 特征提取 语音识别 雷达 电信 语言学 哲学
作者
Lukui Shi,Jingye Zhang,Bo Yang,Yingjie Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (10): 4768-4779
标识
DOI:10.1109/jbhi.2023.3306911
摘要

Air pollution and aging population have caused increasing rates of lung diseases and elderly lung diseases year by year. At the same time, the outbreak of COVID-19 has brought challenges to the medical system, which placed higher demands on preventing lung diseases and improving diagnostic efficiency to some extent. Artificial intelligence can alleviate the burden on the medical system by analyzing lung sound signals to help to diagnose lung diseases. The existing models for lung sound recognition have challenges in capturing the correlation between time and frequency information. It is difficult for convolutional neural network to capture multi-scale features across different resolutions, and the fusion of features ignores the difference of influences between time and frequency features. To address these issues, a lung sound recognition model based on multi-resolution interleaved net and time-frequency feature enhancement was proposed, which consisted of a heterogeneous dual-branch time-frequency feature extractor (TFFE), a time-frequency feature enhancement module based on branch attention (FEBA), and a fusion semantic classifier based on semantic mapping (FSC). TFFE independently extracts the time and frequency information of lung sounds through a multi-resolution interleaved net and Transformer, which maintains the correlation between time-frequency features. FEBA focuses on the differences in the influence of time and frequency information on prediction results by branch attention. The proposed model achieved an accuracy of 91.56% on the combined dataset, by an improvement of over 2.13% compared to other models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huangsi完成签到,获得积分10
1秒前
上官若男应助林天翼采纳,获得10
2秒前
在水一方应助须臾采纳,获得10
3秒前
5秒前
5秒前
无极微光应助小晚采纳,获得20
6秒前
共享精神应助开朗的诺言采纳,获得10
7秒前
李健应助你看起来很好吃采纳,获得10
8秒前
西北望发布了新的文献求助10
9秒前
9秒前
Tergel发布了新的文献求助10
10秒前
云墨完成签到 ,获得积分10
11秒前
慕青应助王小西采纳,获得10
11秒前
顾矜应助是然采纳,获得10
11秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
seismic完成签到,获得积分10
15秒前
17秒前
17秒前
Hello应助PhDL1采纳,获得10
19秒前
20秒前
20秒前
21秒前
23秒前
Owen应助健壮尔蝶采纳,获得10
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
yqf发布了新的文献求助10
27秒前
28秒前
洗衣液完成签到,获得积分10
28秒前
Orange应助科研鸟采纳,获得10
30秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
32秒前
可爱的函函应助洗衣液采纳,获得10
33秒前
星辰大海应助Sev1M采纳,获得10
35秒前
feizhouheiba发布了新的文献求助10
35秒前
36秒前
旺仔发布了新的文献求助10
37秒前
orixero应助Tergel采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826606
求助须知:如何正确求助?哪些是违规求助? 6016771
关于积分的说明 15570188
捐赠科研通 4946781
什么是DOI,文献DOI怎么找? 2664976
邀请新用户注册赠送积分活动 1610843
关于科研通互助平台的介绍 1565757