Advances in rock physics for pore pressure prediction: A comprehensive review and future directions

杠杆(统计) 地球物理学 计算机科学 领域(数学) 预测建模 机器学习 地质学 人工智能 数据科学 数学 纯数学
作者
Adindu Donatus Ogbu,Kate A. Iwe,Williams Ozowe,Augusta Heavens Ikevuje
出处
期刊:Engineering science & tecnology journal [Fair East Publishers]
卷期号:5 (7): 2304-2322 被引量:4
标识
DOI:10.51594/estj.v5i7.1345
摘要

Advances in rock physics have significantly enhanced pore pressure prediction, a critical aspect of subsurface exploration and drilling operations. This comprehensive review delves into the latest developments in rock physics methodologies, integrating empirical, theoretical, and computational approaches to predict pore pressure more accurately. Traditional pore pressure prediction methods often rely on well log data and seismic attributes, but recent advancements have introduced innovative techniques that leverage the physical properties of rocks to provide more reliable predictions. Key advances include the development of improved rock physics models that better account for the complexities of subsurface environments, such as heterogeneity and anisotropy. These models integrate data from various sources, including well logs, core samples, and seismic surveys, to create a more comprehensive understanding of the subsurface. Additionally, the application of machine learning and artificial intelligence to rock physics has opened new avenues for analyzing large datasets, identifying patterns, and refining predictive models. This review also examines the role of laboratory experiments and field studies in validating and calibrating rock physics models. High-pressure and high-temperature experiments have provided valuable insights into the behavior of rocks under different conditions, which are essential for accurate pore pressure prediction. Field studies, on the other hand, offer real-world data that help in fine-tuning models and methodologies. Future directions in rock physics for pore pressure prediction include the integration of advanced geophysical techniques, such as full-waveform inversion and distributed acoustic sensing, which offer higher resolution data and more detailed subsurface imaging. The use of cloud computing and high-performance computing platforms is also expected to enhance the processing and analysis of large datasets, making predictive models more efficient and scalable. The comprehensive review concludes by highlighting the importance of interdisciplinary collaboration in advancing rock physics methodologies. By combining expertise from geophysics, petrophysics, geomechanics, and data science, the field can continue to innovate and improve the accuracy and reliability of pore pressure predictions, ultimately enhancing exploration and production efficiency in the oil and gas industry. Keywords: Advances, Rock Physics, Pore Pressure, Prediction, Future Directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
蓝从完成签到,获得积分10
刚刚
刚刚
彩色的怀柔完成签到,获得积分10
1秒前
缥缈的绿兰完成签到,获得积分10
1秒前
淡水痕发布了新的文献求助10
1秒前
2秒前
帅气的藏鸟完成签到,获得积分10
2秒前
星辰大海应助茉莉采纳,获得10
2秒前
阿玉发布了新的文献求助10
2秒前
2秒前
英姑应助wenwen采纳,获得10
2秒前
Sun发布了新的文献求助10
2秒前
ZXG完成签到,获得积分10
3秒前
3秒前
ttttttx发布了新的文献求助10
4秒前
桐桐应助十一采纳,获得10
4秒前
6秒前
淡然尔蝶完成签到,获得积分10
6秒前
6秒前
平常的毛豆应助施中明采纳,获得10
7秒前
慕青应助gy1991采纳,获得10
7秒前
starryxm发布了新的文献求助10
7秒前
8秒前
李爱国应助Sun采纳,获得10
8秒前
哈哈哈发布了新的文献求助10
9秒前
昔昔完成签到 ,获得积分10
9秒前
9秒前
10秒前
10秒前
mooser发布了新的文献求助10
10秒前
77完成签到 ,获得积分10
12秒前
聪明的tracy应助Elijah采纳,获得10
12秒前
13秒前
ttttttx完成签到,获得积分10
13秒前
13秒前
年三月发布了新的文献求助10
13秒前
drli驳回了打打应助
14秒前
14秒前
sdasdd10发布了新的文献求助10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785428
求助须知:如何正确求助?哪些是违规求助? 3330961
关于积分的说明 10249349
捐赠科研通 3046441
什么是DOI,文献DOI怎么找? 1672000
邀请新用户注册赠送积分活动 800943
科研通“疑难数据库(出版商)”最低求助积分说明 759905