亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High Fe-Loading Single-Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy

催化作用 抗菌活性 金属 体内 活性氧 体外 化学 超氧化物 谷胱甘肽 密度泛函理论 组合化学 核化学 生物物理学 材料科学 生物化学 细菌 有机化学 计算化学 生物 遗传学 生物技术
作者
Si Chen,Fang Huang,Lijie Mao,Zhimin Zhang,Han Lin,Qixin Yan,Xiangyu Lu,Jianlin Shi
出处
期刊:Nano-micro Letters [Springer Science+Business Media]
卷期号:17 (1) 被引量:6
标识
DOI:10.1007/s40820-024-01522-1
摘要

Abstract The current single-atom catalysts (SACs) for medicine still suffer from the limited active site density. Here, we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron. The constructed iron SACs (h 3 -FNC) with a high metal loading of 6.27 wt% and an optimized adjacent Fe distance of ~ 4 Å exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects. Attractively, a “density effect” has been found at a high-enough metal doping amount, at which individual active sites become close enough to interact with each other and alter the electronic structure, resulting in significantly boosted intrinsic activity of single-atomic iron sites in h 3 -FNCs by 2.3 times compared to low- and medium-loading SACs. Consequently, the overall catalytic activity of h 3 -FNC is highly improved, with mass activity and metal mass-specific activity that are, respectively, 66 and 315 times higher than those of commercial Pt/C. In addition, h 3 -FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion (O 2 · − ) and glutathione (GSH) depletion. Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h 3 -FNCs in promoting wound healing. This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HiDasiy完成签到 ,获得积分10
10秒前
努力的淼淼完成签到 ,获得积分10
10秒前
zy完成签到,获得积分10
11秒前
美合完成签到 ,获得积分10
12秒前
12秒前
江氏巨颏虎完成签到,获得积分10
20秒前
22秒前
爆米花应助活泼的眼神采纳,获得10
26秒前
小伏发布了新的文献求助10
27秒前
KYT完成签到 ,获得积分10
28秒前
徐zhipei完成签到 ,获得积分10
47秒前
11发布了新的文献求助10
51秒前
小蘑菇应助橙子采纳,获得10
56秒前
anthea完成签到 ,获得积分10
57秒前
58秒前
1分钟前
MrTStar完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI5应助冰冰采纳,获得10
1分钟前
净净子完成签到 ,获得积分10
1分钟前
打打应助科研通管家采纳,获得10
1分钟前
1分钟前
老实醉冬发布了新的文献求助10
1分钟前
打地鼠工人完成签到,获得积分10
1分钟前
俏皮元珊完成签到 ,获得积分10
1分钟前
hmf1995完成签到 ,获得积分10
1分钟前
儒雅凡桃发布了新的文献求助10
1分钟前
水星完成签到,获得积分10
1分钟前
Cccsy完成签到 ,获得积分10
1分钟前
科研通AI5应助缥缈飞鸟采纳,获得10
1分钟前
1分钟前
邵能琪发布了新的文献求助10
1分钟前
嘻嘻嘻发布了新的文献求助10
1分钟前
好好学习完成签到,获得积分10
1分钟前
麻瓜完成签到,获得积分10
1分钟前
邵能琪完成签到,获得积分20
1分钟前
蓝苏关注了科研通微信公众号
1分钟前
Hello应助儒雅凡桃采纳,获得10
2分钟前
shimhjy应助邵能琪采纳,获得10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800880
求助须知:如何正确求助?哪些是违规求助? 3346386
关于积分的说明 10329180
捐赠科研通 3062834
什么是DOI,文献DOI怎么找? 1681207
邀请新用户注册赠送积分活动 807462
科研通“疑难数据库(出版商)”最低求助积分说明 763702