已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Photocatalysis with Covalent Organic Frameworks

光催化 共价键 化学 纳米技术 环境化学 光化学 材料科学 有机化学 催化作用
作者
Yongzhi Chen,Donglin Jiang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (21): 3182-3193 被引量:97
标识
DOI:10.1021/acs.accounts.4c00517
摘要

ConspectusUtilizing light to enable chemical conversions presents a green and sustainable approach to produce fuels and chemicals, and photocatalysis is one of the key chemical technologies that needs to be well developed in this century. Despite continuous progress in the advancement of various photocatalysts based on small inorganic and organic compounds, polymers, and networks, designing and constructing photocatalysts that combine activity, selectivity, and reusability remains a challenging goal. For catalytic activity, the difficulty originates from the complexity of photochemical reactions, where the light-harvesting system, multielectron and multihole-involving processes, and pinpoint mass delivery simultaneously need to be established in the system. For selectivity, the difficulty stems from the elaborate design of catalytic sites and space, especially their orbital energy levels, spatial arrangement, and environment; developing a molecular strategy that enables an overall design and control of these factors of different aspects is necessary yet arduous. For reusability, the difficulty arises from the stability and recyclability of the photocatalysts upon continuous operation under photoredox reaction conditions. How to recover photocatalysts in an energy-saving way to enable their cyclic use while retaining activity and selectivity is at the core of this problem. These bottleneck issues reflect that molecular design of a photocatalyst is not a simple summation of the above requirements, but a systematic scheme that can organically interlock various aspects is needed.To enable such an elaborate design and precise control, a basic requirement of the scaffold for constructing a promising photocatalyst is that its primary and high-order structures should be molecularly predesignable and synthetically controllable. Such a molecular regime has successfully evolved in natural photosynthesis, where light-harvesting chlorophyll antennae and photocatalytic centers are spatially well-organized and energetically well-defined to build ways for exciton migration, photoinduced electron transfer and charge separation, electron and hole flows, and oxidation of water and reduction of carbon dioxide, thereby converting water into oxygen to release ATP and NADPH via the light reaction and carbon dioxide into glucose with ATP and NADPH through the dark reaction. Similarly, a predesignable polymeric scaffold would be promising for integrating these complex photochemical processes to construct photocatalysts.Covalent organic frameworks (COFs) are a class of extended yet polymeric materials that enable the organization of organic units or metallo-organic moieties into well-defined architectures. In principle, COFs are molecularly designable with topology diagrams and synthetically controllable through polymerization reactions, offering an irreplaceable platform for designing and synthesizing photocatalysts. This feature enticed researchers to develop various photocatalysts based on COFs and drove the rapid progress in this field over the past decade. In this Account, we summarize the recent advances in the molecular design and synthetic control of COF photocatalysts, by highlighting the key achievements in developing ways to enable light harvesting, trigger photoinduced electron transfer and charge separation, allow charge carrier transport and mass delivery, control energy level, catalytic space, and environmental engineering, and develop stability and recyclability with an aim to reveal a full picture of this field. By scrutinizing typical photocatalytic reactions, we show the key problems to be addressed for COFs and predict future directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hobowei完成签到 ,获得积分10
2秒前
3sigma发布了新的文献求助10
2秒前
钮祜禄萱完成签到 ,获得积分10
5秒前
7秒前
7秒前
迪迦7777发布了新的文献求助10
9秒前
神内打工人完成签到 ,获得积分10
11秒前
dovejingling发布了新的文献求助10
11秒前
慕青应助17采纳,获得10
12秒前
3sigma完成签到,获得积分10
14秒前
自信河马完成签到,获得积分10
15秒前
Evelyn完成签到,获得积分10
16秒前
爆米花应助lonepl采纳,获得10
17秒前
17秒前
生动娩发布了新的文献求助10
19秒前
小霞完成签到 ,获得积分10
22秒前
WAR708发布了新的文献求助10
23秒前
Wang1991完成签到,获得积分10
25秒前
ding应助心怡采纳,获得30
26秒前
拼搏蜻蜓完成签到 ,获得积分10
28秒前
科研通AI6应助WAR708采纳,获得10
30秒前
30秒前
zwang688完成签到,获得积分10
30秒前
在水一方应助阿Q采纳,获得10
32秒前
超级的绫完成签到 ,获得积分10
32秒前
33秒前
Sylvia_J完成签到 ,获得积分10
34秒前
34秒前
昆工完成签到 ,获得积分10
34秒前
34秒前
37秒前
Anoxra完成签到 ,获得积分10
38秒前
幼柚发布了新的文献求助10
38秒前
39秒前
43秒前
46秒前
阿Q发布了新的文献求助10
46秒前
46秒前
46秒前
幼柚完成签到,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049