Hydrovoltaic Effects from Mechanical–Electric Coupling at the Water–Solid Interface

接口(物质) 联轴节(管道) 固体表面 纳米技术 化学物理 材料科学 化学 润湿 复合材料 坐滴法
作者
Tao Hu,Kelan Zhang,Wei Deng,Wanlin Guo
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (35): 23912-23940 被引量:3
标识
DOI:10.1021/acsnano.4c07900
摘要

The natural water cycle on the Earth carries an enormous amount of energy as thirty-five percent of solar energy reaching the Earth's surface goes into water. However, only a very marginal part of the contained energy, mostly kinetic energy of large volume bulk water, is harvested by hydroelectric power plants. Natural processes in the water cycle, such as rainfall, water evaporation, and moisture adsorption, are widespread but have remained underexploited in the past due to the lack of appropriate technologies. In the past decade, the emergence of hydrovoltaic technology has provided ever-increasing opportunities to extend the technical capability for energy harvesting from the water cycle. Featuring electricity generation from mechanical-electric coupling at the water-solid interface, hydrovoltaic technology embraces almost all dynamic processes associated with water, including raining, waving, flowing, evaporating, and moisture adsorbing. This versatility in dealing with various forms of water and associated energy renders hydrovoltaic technology a solution for fossil fuel-caused environmental problems. Here, we review the current progress of hydrovoltaic energy harvesting from water motion, evaporation, and ambient moisture. Device configuration, energy conversion mechanism mediated by mechanical-electric coupling at various water-solid interfaces, as well as materials selection and functionalization are discussed. Useful strategies guided by established mechanisms for device optimization are then covered. Finally, we provide an outlook on this emerging field and outline the challenges of improving output performance toward potential practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩涵完成签到 ,获得积分10
1秒前
2秒前
思绪摸摸头完成签到 ,获得积分10
2秒前
未来的幻想完成签到,获得积分10
3秒前
新威宝贝完成签到,获得积分0
4秒前
科研通AI5应助徵xi采纳,获得10
4秒前
4秒前
6秒前
chloe完成签到,获得积分10
6秒前
7秒前
Xiaojiu完成签到 ,获得积分10
8秒前
9秒前
徵xi完成签到,获得积分20
9秒前
Bryce完成签到 ,获得积分10
10秒前
用师兄单身换论文必中完成签到,获得积分10
11秒前
zhu完成签到,获得积分10
12秒前
12秒前
HUAJIAO发布了新的文献求助10
13秒前
13秒前
Zhengkeke发布了新的文献求助30
13秒前
xu发布了新的文献求助10
13秒前
cyj完成签到,获得积分10
14秒前
李健应助符寄柔采纳,获得10
16秒前
16秒前
sciq完成签到,获得积分10
17秒前
17秒前
赘婿应助prim采纳,获得10
18秒前
bq完成签到,获得积分10
18秒前
19秒前
归尘应助小奶瓶_采纳,获得10
19秒前
我是老大应助小奶瓶_采纳,获得10
19秒前
Bluedream发布了新的文献求助10
19秒前
20秒前
22秒前
徵xi发布了新的文献求助10
22秒前
栖木木完成签到 ,获得积分10
24秒前
英勇凝旋完成签到,获得积分10
26秒前
冯珂发布了新的文献求助30
26秒前
Ava应助科研通管家采纳,获得10
27秒前
瑞_应助科研通管家采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776271
求助须知:如何正确求助?哪些是违规求助? 3321743
关于积分的说明 10207530
捐赠科研通 3037032
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797517
科研通“疑难数据库(出版商)”最低求助积分说明 757868