淡出
电解质
锂(药物)
电池(电)
粒子(生态学)
降级(电信)
锂离子电池
计算机科学
生物系统
工作(物理)
离子
模拟
材料科学
化学
工程类
物理
机械工程
热力学
电极
有机化学
医学
电信
生物
海洋学
功率(物理)
物理化学
内分泌学
地质学
操作系统
作者
Siddhant Singh,David G. Kwabi,Xun Huan,Thomas Coons,Yash Vaibhav Pathak,Jason B. Siegel
出处
期刊:Meeting abstracts
日期:2024-08-09
卷期号:MA2024-01 (5): 731-731
标识
DOI:10.1149/ma2024-015731mtgabs
摘要
The intelligent design of durable, next-generation lithium-ion batteries can be facilitated through the use of computationally efficient models that capture battery physics. In this work, we demonstrate a single particle model with electrolyte dynamics (SPMe), which accounts for battery capacity fade caused by mechanisms such as solid electrolyte interface (SEI) growth, lithium plating, and stress-induced particle cracking. The model is trained using both experimental data and data generated using a higher-fidelity Doyle-Fuller-Newman model so the ground truth parameters are known. To quantify and reduce the uncertainty in the unknown model parameters, we are developing a Bayesian experimental design approach that, with the aid of multiple models with varying fidelity, can rapidly identify optimal experimental input conditions leading to the greatest expected information gain.
科研通智能强力驱动
Strongly Powered by AbleSci AI