Enhancing Weakly Supervised Semantic Segmentation with Multi-label Contrastive Learning and LLM Features Guidance

计算机科学 人工智能 分割 自然语言处理 语义学(计算机科学) 图像分割 模式识别(心理学) 程序设计语言
作者
Wentian Cai,Yijiang Li,Yandan Chen,Jing Lin,Zihao Huang,Ping Gao,Thippa Reddy Gadekallu,Wei Wang,Ying Gao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/jbhi.2024.3450013
摘要

Histopathological whole-slide image (WSI) segmentation is essential for precise tissue characterization in medical diagnostics. However, traditional approaches require labor-intensive pixel-level annotations. To this end, we study weakly supervised semantic segmentation (WSSS) which uses patch-level classification labels, reducing annotation efforts significantly. However, the complexity of WSIs and the challenge of sparse classification labels hinder effective dense pixel predictions. Moreover, due to the multi-label nature of WSI, existingapproachesofsingle-labelcontrastivelearningdesignedfortherepresentationofsingle-category, neglecting the presence of other relevant categories and thus fail to adapt to WSI tasks. This paper presents a novel multilabel contrastive learning method for WSSS by incorporating class-specific embedding extraction with LLM features guidance. Specifically, we propose to obtain class-specific embeddings by utilizing classifier weights, followed by a dot-product-based attention fusion method that leverages LLM features to enrich their semantics, facilitating contrastive learning between different classes from single image. Besides, we propose a Robust Learning approach that leverages multi-layer features to evaluate the uncertainty of pseudo-labels, thereby mitigating the impact of noisy pseudo-labels on the learning process of segmentation. Extensive experiments have been conducted on two Histopathological image segmentation datasets, i.e. LUAD dataset and BCSS dataset, demonstrating the effectiveness of our methods with leading performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LYH发布了新的文献求助10
1秒前
1秒前
lucygaga完成签到 ,获得积分10
2秒前
2秒前
安之发布了新的文献求助10
3秒前
miawei完成签到,获得积分10
4秒前
可爱冰绿完成签到,获得积分10
4秒前
4秒前
跳跃完成签到,获得积分10
4秒前
科目三应助bingsu108采纳,获得10
5秒前
5秒前
木今完成签到,获得积分10
5秒前
zcvxd完成签到,获得积分10
6秒前
6秒前
WJM完成签到,获得积分10
7秒前
李健应助科研人采纳,获得10
8秒前
吱吱发布了新的文献求助30
9秒前
10秒前
思源应助安之采纳,获得10
10秒前
zhx完成签到,获得积分10
11秒前
DHMO完成签到,获得积分10
12秒前
12秒前
飞翔的霸天哥应助往前冲采纳,获得30
12秒前
bingo发布了新的文献求助10
13秒前
刻苦惜霜完成签到,获得积分10
13秒前
h123发布了新的文献求助10
13秒前
蓝丝绒发布了新的文献求助10
13秒前
玲玲应助司空豁采纳,获得30
15秒前
15秒前
苇一发布了新的文献求助10
15秒前
科研小白121212完成签到,获得积分10
15秒前
芙瑞完成签到 ,获得积分10
16秒前
16秒前
16秒前
文艺帽子完成签到,获得积分10
17秒前
星空点点完成签到,获得积分10
17秒前
ff完成签到,获得积分10
17秒前
17秒前
18秒前
懵懂的采梦应助活力菠萝采纳,获得10
18秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3905252
求助须知:如何正确求助?哪些是违规求助? 3450212
关于积分的说明 10860861
捐赠科研通 3175565
什么是DOI,文献DOI怎么找? 1754449
邀请新用户注册赠送积分活动 848235
科研通“疑难数据库(出版商)”最低求助积分说明 790892