Dynamical behavior of soliton solutions to the space-time fractional combined KDV-MKDV equation through two robust techniques

Korteweg–de Vries方程 孤子 空格(标点符号) 物理 应用数学 数学物理 数学分析 数学 统计物理学 计算机科学 非线性系统 量子力学 操作系统
作者
Anamika Podder,Mohammad Asif Arefin,Hassan Ali Ghazwani,M. Hafiz Uddin,M. Ali Akbar
出处
期刊:Modern Physics Letters B [World Scientific]
标识
DOI:10.1142/s0217984925500319
摘要

Nonlinear fractional-order partial differential equations play an important role in science and engineering by illustrating a variety of nonlinear processes. The nonlinear space-time fractional combined Korteweg-de Vries and modified Korteweg-de Vries equation is a very significant fractional partial differential equation and is used to simulate shallow water surface wave phenomena, pulse waves in large arteries, ion acoustic waves in plasmas, and atmospheric dust-acoustic solitary waves. The improved Bernoulli sub-equation function method and the new generalized [Formula: see text]-expansion method are two noteworthy approaches that have been used to analyze and extract solutions to the above-mentioned equation that include various types of traveling waves as well as soliton solutions via beta-derivative. Through the utilization of a wave transformation, the fractional-order equation is transformed into a nonlinear ordinary differential equation. The exponential function, trigonometric function, rational function, and hyperbolic trigonometric function solutions with arbitrary constants have been used to articulate the obtained solutions. By utilizing the aforementioned approaches, several standard waveforms have been recognized including multiple periodic types, kink shapes, bell-shaped, single solitons, and other types of solitons. Mathematica software has been used to illustrate the wave profiles through 3D and contour plots, providing a clearer physical sketch based on diverse values of free parameters. The suggested methods have demonstrated their reliability in establishing more generalized wave solutions and exhibit computational efficiency, making them suitable for soliton solutions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪蹄完成签到,获得积分10
2秒前
激情的纲完成签到,获得积分10
2秒前
1101592875完成签到,获得积分10
2秒前
Debra完成签到,获得积分20
2秒前
塘仔完成签到,获得积分10
2秒前
qingfeng完成签到,获得积分10
3秒前
功不唐捐完成签到,获得积分10
4秒前
kellen完成签到,获得积分10
4秒前
EIEI完成签到,获得积分10
5秒前
5秒前
王先生完成签到,获得积分10
6秒前
Hello应助gw0926GW采纳,获得10
7秒前
考啥都上岸完成签到,获得积分10
7秒前
芋头读文献完成签到,获得积分10
7秒前
8秒前
puritan完成签到 ,获得积分10
8秒前
可爱的函函应助桐1210采纳,获得10
8秒前
hello完成签到 ,获得积分10
9秒前
Guomin完成签到,获得积分10
9秒前
星河在眼里完成签到,获得积分10
10秒前
落寞剑成完成签到 ,获得积分10
11秒前
yao完成签到,获得积分10
12秒前
Soxiar完成签到,获得积分10
12秒前
Solar energy发布了新的文献求助10
12秒前
123完成签到 ,获得积分10
13秒前
小米的稻田完成签到 ,获得积分10
13秒前
citrus完成签到,获得积分10
13秒前
i的问题发布了新的文献求助10
13秒前
13秒前
tleeny完成签到,获得积分10
13秒前
孝铮完成签到 ,获得积分10
14秒前
ylky完成签到 ,获得积分10
14秒前
lllll完成签到,获得积分10
15秒前
15秒前
15秒前
王佳豪完成签到,获得积分10
15秒前
Dongxz666完成签到,获得积分10
16秒前
筱星完成签到,获得积分10
16秒前
rui完成签到 ,获得积分10
16秒前
阳光的易真完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
The Rise & Fall of Classical Legal Thought 260
Geography : the study of location, culture, and environment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4345203
求助须知:如何正确求助?哪些是违规求助? 3851863
关于积分的说明 12022341
捐赠科研通 3493472
什么是DOI,文献DOI怎么找? 1916947
邀请新用户注册赠送积分活动 959899
科研通“疑难数据库(出版商)”最低求助积分说明 860001