已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Unsupervised Dual Deep Hashing With Semantic-Index and Content-Code for Cross-Modal Retrieval

计算机科学 散列函数 人工智能 情态动词 索引(排版) 对偶(语法数字) 情报检索 编码(集合论) 内容(测量理论) 自然语言处理 模式识别(心理学) 数学 艺术 数学分析 化学 文学类 集合(抽象数据类型) 高分子化学 程序设计语言 计算机安全 万维网
作者
Bin Zhang,Yue Zhang,Junyu Li,Jiazhou Chen,Tatsuya Akutsu,Yiu‐ming Cheung,Hongmin Cai
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (1): 387-399 被引量:12
标识
DOI:10.1109/tpami.2024.3467130
摘要

Hashing technology has exhibited great cross-modal retrieval potential due to its appealing retrieval efficiency and storage effectiveness. Most current supervised cross-modal retrieval methods heavily rely on accurate semantic supervision, which is intractable for annotations with ever-growing sample sizes. By comparison, the existing unsupervised methods rely on accurate sample similarity preservation strategies with intensive computational costs to compensate for the lack of semantic guidance, which causes these methods to lose the power to bridge the semantic gap. Furthermore, both kinds of approaches need to search for the nearest samples among all samples in a large search space, whose process is laborious. To address these issues, this paper proposes an unsupervised dual deep hashing (UDDH) method with semantic-index and content-code for cross-modal retrieval. Deep hashing networks are utilized to extract deep features and jointly encode the dual hashing codes in a collaborative manner with a common semantic index and modality content codes to simultaneously bridge the semantic and heterogeneous gaps for cross-modal retrieval. The dual deep hashing architecture, comprising the head code on semantic index and tail codes on modality content, enhances the efficiency for cross-modal retrieval. A query sample only needs to search for the retrieved samples with the same semantic index, thus greatly shrinking the search space and achieving superior retrieval efficiency. UDDH integrates the learning processes of deep feature extraction, binary optimization, common semantic index, and modality content code within a unified model, allowing for collaborative optimization to enhance the overall performance. Extensive experiments are conducted to demonstrate the retrieval superiority of the proposed approach over the state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
HCCha完成签到,获得积分10
1秒前
2秒前
4秒前
壮观初夏完成签到,获得积分10
5秒前
ttthhh关注了科研通微信公众号
6秒前
王平安完成签到 ,获得积分10
9秒前
9秒前
jieni完成签到,获得积分10
9秒前
orixero应助炙热安彤采纳,获得10
10秒前
chen完成签到,获得积分10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
Momomo应助科研通管家采纳,获得10
11秒前
GingerF应助科研通管家采纳,获得50
11秒前
思源应助科研通管家采纳,获得10
11秒前
Momomo应助科研通管家采纳,获得10
11秒前
12秒前
12秒前
研友_VZG7GZ应助jieni采纳,获得10
13秒前
13秒前
浅沐完成签到 ,获得积分20
16秒前
16秒前
淡然柚子完成签到,获得积分10
16秒前
阳谋无解发布了新的文献求助10
17秒前
18秒前
徐志豪完成签到,获得积分20
21秒前
yixin发布了新的文献求助10
23秒前
24秒前
为你钟情完成签到 ,获得积分10
25秒前
28秒前
28秒前
Yoo完成签到 ,获得积分10
28秒前
可乐完成签到,获得积分20
30秒前
霍鑫鑫发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493501
求助须知:如何正确求助?哪些是违规求助? 4591594
关于积分的说明 14434178
捐赠科研通 4524033
什么是DOI,文献DOI怎么找? 2478548
邀请新用户注册赠送积分活动 1463537
关于科研通互助平台的介绍 1436387