SAMA: A Self-and-Mutual Attention Network for Accurate Recurrence Prediction of Non-Small Cell Lung Cancer Using Genetic and CT Data

计算机科学 肺癌 人工智能 遗传网络 机器学习 数据挖掘 医学 肿瘤科 生物 基因 遗传学
作者
Yang Ai,Jing Liu,Yinhao Li,Fang Wang,Xiuju Du,Rahul Kumar Jain,Lanfen Lin,Yen‐Wei Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/jbhi.2024.3471194
摘要

Accurate preoperative recurrence prediction for non-small cell lung cancer (NSCLC) is a challenging issue in the medical field. Existing studies primarily conduct image and molecular analyses independently or directly fuse multimodal information through radiomics and genomics, which fail to fully exploit and effectively utilize the highly heterogeneous cross-modal information at different levels and model the complex relationships between modalities, resulting in poor fusion performance and becoming the bottleneck of precise recurrence prediction. To address these limitations, we propose a novel unified framework, the Self-and-Mutual Attention (SAMA) Network, designed to efficiently fuse and utilize macroscopic CT images and microscopic gene data for precise NSCLC recurrence prediction, integrating handcrafted features, deep features, and gene features. Specifically, we design a Self-and-Mutual Attention Module that performs three-stage fusion: the self-enhancement stage enhances modality-specific features; the gene-guided and CT-guided cross-modality fusion stages perform bidirectional cross-guidance on the self-enhanced features, complementing and refining each modality, enhancing heterogeneous feature expression; and the optimized feature aggregation stage ensures the refined interactive features for precise prediction. Extensive experiments on both publicly available datasets from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) demonstrate that our method achieves state-of-the-art performance and exhibits broad applicability to various cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西西弗思发布了新的文献求助10
1秒前
xavier完成签到 ,获得积分10
4秒前
丝丢皮得完成签到 ,获得积分10
12秒前
不吃芹菜完成签到,获得积分10
13秒前
chen完成签到 ,获得积分10
16秒前
17秒前
丝丢皮的完成签到 ,获得积分10
17秒前
岁月荣耀发布了新的文献求助10
22秒前
23秒前
lth完成签到 ,获得积分10
25秒前
风不尽,树不静完成签到 ,获得积分10
25秒前
背书强完成签到 ,获得积分10
29秒前
32秒前
张振宇完成签到 ,获得积分10
32秒前
Echo完成签到,获得积分10
32秒前
shuangfeng1853完成签到 ,获得积分10
34秒前
朱成豪发布了新的文献求助10
35秒前
37秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
38秒前
39秒前
panpanliumin完成签到,获得积分0
41秒前
lxh发布了新的文献求助10
43秒前
善善完成签到 ,获得积分10
49秒前
ru完成签到 ,获得积分10
57秒前
cheng完成签到 ,获得积分10
1分钟前
yzhilson完成签到 ,获得积分10
1分钟前
1分钟前
朱婷完成签到 ,获得积分10
1分钟前
奋斗的妙海完成签到 ,获得积分0
1分钟前
大胆的忆寒完成签到 ,获得积分10
1分钟前
自觉的万言完成签到 ,获得积分10
1分钟前
YAN完成签到 ,获得积分10
1分钟前
Akim应助周小鱼采纳,获得10
1分钟前
1分钟前
1分钟前
周小鱼发布了新的文献求助10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
cdercder应助科研通管家采纳,获得10
1分钟前
徐doc完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376342
关于积分的说明 10492639
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859