Label Enhancement-Based Multiscale Transformer for Palm-Vein Recognition

人工智能 模式识别(心理学) 卷积神经网络 计算机科学 特征提取 生物识别 像素 支持向量机 分类器(UML) 变压器 工程类 电气工程 电压
作者
Huafeng Qin,Changqing Gong,Yantao Li,Xinbo Gao,Mounîm A. El‐Yacoubi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-17 被引量:10
标识
DOI:10.1109/tim.2023.3261909
摘要

Vein biometrics is a high security and privacy preserving identification technology that has received increasing attentions. Although deep neural networks (DNNs), such as convolutional neural network (CNN), have been investigated for vein recognition and achieved a significant improvement in accuracy, they still fail to model long-range pixel dependencies in an image. Moreover, their performance is limited because the one-hot label vector employed for training may ignore the relevance among labels. To address these problems, we propose LE-MSVT, a Label Enhancement based Multi-Scale Vein Transformer for palm-vein recognition in this paper. First, we propose a multi-scale vein transformer (MSVT) to learn robust and multi-scale features, which consists of a convolutional block that captures the local information and a self-attention block that extracts scale dependencies among images with different scales. Second, to capture the relevance among labels, we explore a graph convolutional network based label enhancement (GCNLE) approach to recover the realistic label distribution for vein classification improvement. GCNLE exploits a multi-layer perception to learn an effective label correlation matrix for extracting the relation information between an input image and multiple training images from different classes. The label distribution vector is generated and then combined with the one-hot label to compute a realistic label distribution of the input image. Finally, we apply GCNLE to MSVT to obtain LE-MSVT, which is trained in an end-to-end way to further improve the feature representation capacity of MSVT classifier. We conduct extensive experiments in terms of MSVT performance and LE-MSVT improvements on three public palm-vein databases, and the experimental results show that the resulting MSVT outperforms other vein identification approaches and achieves the best performance among existing approaches, and GCNLE can greatly improve the performance of MSVT among other deep learning based classifiers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
延续发布了新的文献求助10
3秒前
拉风中带点萌完成签到,获得积分10
4秒前
11发布了新的文献求助20
6秒前
安静海莲发布了新的文献求助10
7秒前
8秒前
9秒前
11秒前
万能图书馆应助小颜采纳,获得10
11秒前
田様应助yelisia采纳,获得10
11秒前
Mannone完成签到,获得积分10
11秒前
哈哈哈哈完成签到,获得积分10
13秒前
Mannone发布了新的文献求助10
14秒前
张亚朋完成签到,获得积分10
14秒前
852应助跳跃的语柔采纳,获得10
15秒前
16秒前
16秒前
19秒前
19秒前
小马甲应助安静晓山采纳,获得10
20秒前
梅子完成签到 ,获得积分10
21秒前
张亚朋发布了新的文献求助10
21秒前
XXXX完成签到,获得积分10
21秒前
21秒前
21秒前
chenjie发布了新的文献求助10
22秒前
十年完成签到 ,获得积分10
22秒前
司徒发布了新的文献求助10
24秒前
NexusExplorer应助年轻元冬采纳,获得10
24秒前
echo发布了新的文献求助10
25秒前
26秒前
gzl完成签到,获得积分10
27秒前
shinian完成签到 ,获得积分10
27秒前
28秒前
jiangzong应助典雅的俊驰采纳,获得10
30秒前
gzl发布了新的文献求助10
33秒前
33秒前
飞羽发布了新的文献求助10
34秒前
小林关注了科研通微信公众号
34秒前
35秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110077
求助须知:如何正确求助?哪些是违规求助? 3648393
关于积分的说明 11556471
捐赠科研通 3354008
什么是DOI,文献DOI怎么找? 1842706
邀请新用户注册赠送积分活动 908885
科研通“疑难数据库(出版商)”最低求助积分说明 825794