清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Content and quantity of highlights and annotations predict learning from multiple digital texts

元认知 计算机科学 阅读理解 理解力 相关性(法律) 渲染(计算机图形) 任务(项目管理) 阅读(过程) 领域(数学) 数学教育 心理学 认知 人工智能 语言学 经济 神经科学 管理 程序设计语言 法学 纯数学 哲学 数学 政治学
作者
Alexandra List,Chang-Jen Lin
出处
期刊:Computers & education [Elsevier BV]
卷期号:199: 104791-104791 被引量:6
标识
DOI:10.1016/j.compedu.2023.104791
摘要

Learning from multiple texts is an essential yet challenging academic task. Thus, a persistent need in the field is identifying those strategies that will support students' learning from multiple texts, and facilitating their use. In this study, we adopt a quasi-experimental design to examine how the use of digital annotations, allowing undergraduates (N = 278) to identify and, potentially, link important concepts across texts, can be used to foster learning from multiple texts. Additionally, we examine students' digital highlights and annotations under four different strategy conditions, assigned to elicit different forms of processing found to be effective in prior work. These conditions included asking students to highlight and annotate (a) important or relevant information in texts, (b) connections or links across texts (i.e., intertextual reasoning condition), (c) information in texts facilitating evaluation, and (d) difficult to understand information (i.e., metacognitive monitoring condition). Some differences were found in students' rendering of highlights and annotations across strategy conditions, however, no differences in multiple text comprehension and integration performance were found across strategy conditions. Still, membership in the metacognitive monitoring strategy condition, relative to the relevance condition, as well as students’ highlighting of information supporting evaluation (i.e., source information, statistical evidence), and accessing of references during reading were predictive of multiple text comprehension and integration. Thus, this study contributes to theory by providing further evidence of strategies (e.g., metacognitive monitoring, evaluation) supportive of multiple text learning and introduces a promising means whereby such strategy use may be fostered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
噼里啪啦发布了新的文献求助50
3秒前
科研通AI5应助苏横采纳,获得10
6秒前
28秒前
搜集达人应助科研通管家采纳,获得10
36秒前
玺青一生完成签到 ,获得积分10
51秒前
yuiip完成签到 ,获得积分10
55秒前
如意竺完成签到,获得积分10
1分钟前
碧蓝雁风完成签到 ,获得积分10
1分钟前
rioo完成签到,获得积分10
1分钟前
chcmy完成签到 ,获得积分0
2分钟前
laber完成签到,获得积分0
2分钟前
chloe完成签到 ,获得积分10
2分钟前
赘婿应助啊咧采纳,获得10
2分钟前
jerry完成签到,获得积分10
2分钟前
小西完成签到 ,获得积分10
3分钟前
3分钟前
啊咧发布了新的文献求助10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
科研通AI5应助coco采纳,获得30
3分钟前
3分钟前
3分钟前
冷傲半邪发布了新的文献求助30
3分钟前
Georgechan完成签到,获得积分10
3分钟前
小蘑菇应助冷傲半邪采纳,获得150
4分钟前
哥哥完成签到,获得积分10
4分钟前
噼里啪啦发布了新的文献求助50
4分钟前
4分钟前
xiaozou55完成签到 ,获得积分10
5分钟前
胖小羊完成签到 ,获得积分10
5分钟前
big ben完成签到 ,获得积分10
5分钟前
噼里啪啦完成签到,获得积分10
6分钟前
龙猫爱看书完成签到,获得积分10
6分钟前
6分钟前
聂青枫完成签到,获得积分10
7分钟前
lijunlhc完成签到,获得积分10
7分钟前
7分钟前
彭于晏应助啊咧采纳,获得10
7分钟前
楚襄谷完成签到 ,获得积分10
7分钟前
羽化成仙完成签到 ,获得积分10
7分钟前
nicolaslcq完成签到,获得积分10
7分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475456
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702226
邀请新用户注册赠送积分活动 818828
科研通“疑难数据库(出版商)”最低求助积分说明 771101